ﻻ يوجد ملخص باللغة العربية
We numerically analyze Non-Oberbeck-Boussinesq (NOB) effects in two-dimensional Rayleigh-Benard flow in glycerol, which shows a dramatic change in the viscosity with temperature. The results are presented both as functions of the Rayleigh number (Ra) up to $10^8$ (for fixed temperature difference between the top and bottom plates) and as functions of non-Oberbeck-Boussinesqness or NOBness ($Delta$) up to 50 K (for fixed Ra). For this large NOBness the center temperature $T_c$ is more than 5 K larger than the arithmetic mean temperature $T_m$ between top and bottom plate and only weakly depends on Ra. To physically account for the NOB deviations of the Nusselt numbers from its Oberbeck-Boussinesq values, we apply the decomposition of $Nu_{NOB}/Nu_{OB}$ into the product of two effects, namely first the change in the sum of the top and bottom thermal BL thicknesses, and second the shift of the center temperature $T_c$ as compared to $T_m$. While for water the origin of the $Nu$ deviation is totally dominated by the second effect (cf. Ahlers et al., J. Fluid Mech. 569, pp. 409 (2006)) for glycerol the first effect is dominating, in spite of the large increase of $T_c$ as compared to $T_m$.
Non-Oberbeck-Boussinesq (NOB) effects on the flow organization in two-dimensional Rayleigh-Benard turbulence are numerically analyzed. The working fluid is water. We focus on the temperature profiles, the center temperature, the Nusselt number, and o
We analyse the nonlinear dynamics of the large scale flow in Rayleigh-Benard convection in a two-dimensional, rectangular geometry of aspect ratio $Gamma$. We impose periodic and free-slip boundary conditions in the streamwise and spanwise directions
As shown in earlier work (Ahlers et al., J. Fluid Mech. 569, p.409 (2006)), non-Oberbeck Boussinesq (NOB) corrections to the center temperature in turbulent Rayleigh-Benard convection in water and also in glycerol are governed by the temperature depe
We study the stability of steady convection rolls in 2D Rayleigh--Benard convection with free-slip boundaries and horizontal periodicity over twelve orders of magnitude in the Prandtl number $(10^{-6} leq Pr leq 10^6)$ and five orders of magnitude in
We perform a bifurcation analysis of the steady state solutions of Rayleigh--Benard convection with no-slip boundary conditions in two dimensions using a numerical method called deflated continuation. By combining this method with an initialisation s