ترغب بنشر مسار تعليمي؟ اضغط هنا

Forward Diffracted Parametric X Radiation From a Thick Tungsten Single Crystal at 855 MeV Electron Energy

94   0   0.0 ( 0 )
 نشر من قبل Werner Lauth
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Features of forward diffracted Parametric X-Radiation (PXR) were investigated at experiments with the 855 MeV electron beam of the Mainz Microtron MAMI employing a 410 micrometer thick tungsten single crystal. Virtual photons from the electron field are diffracted by the (10-1) plane at a Bragg angle of 3.977 degree. Forward emitted radiation was analyzed at an energy of 40 keV with the (111) lattice planes of a flat silicon single crystal in Bragg geometry. Clear peak structures were observed in an angular scan of the tungsten single crystal. The results were analyzed with a model which describes forward diffracted PXR under real experimental conditions. The experiments show that forward diffracted PXR may be employed to diagnose bending radii of lattice planes in large area single crystals.


قيم البحث

اقرأ أيضاً

The method of relativistic molecular dynamics is applied for accurate computational modelling and numerical analysis of the channelling phenomena for 855 MeV electrons in bent oriented silicon (111) crystal. Special attention is devoted to the transi tion from the axial channelling regime to the planar one in the course of the crystal rotation with respect to the incident beam. Distribution in the deflection angle of electrons and spectral distribution of the radiation emitted are analysed in detail. The results of calculations are compared with the experimental data collected at the MAinzer MIctrotron (MAMI) facility.
A crystalline undulator (CU) with periodically deformed crystallographic planes is capable of deflecting charged particles with the same strength as an equivalent magnetic field of 1000 T and could provide quite a short period L in the sub-millimeter range. We present an idea for creation of a CU and report its first realization. One face of a silicon crystal was given periodic micro-scratches (grooves), with a period of 1 mm, by means of a diamond blade. The X-ray tests of the crystal deformation have shown that a sinusoidal-like shape of crystalline planes goes through the bulk of the crystal. This opens up the possibility for experiments with high-energy particles channeled in CU, a novel compact source of radiation. The first experiment on photon emission in CU has been started at LNF with 800 MeV positrons aiming to produce 50 keV undulator photons.
95 - Zheng Zhou 2017
Using a high energy electron beam for the imaging of high density matter with both high spatial-temporal and areal density resolution under extreme states of temperature and pressure is one of the critical challenges in high energy density physics . When a charged particle beam passes through an opaque target, the beam will be scattered with a distribution that depends on the thickness of the material. By collecting the scattered beam either near or off axis, so-called bright field or dark field images can be obtained. Here we report on an electron radiography experiment using 45 MeV electrons from an S-band photo-injector, where scattered electrons, after interacting with a sample, are collected and imaged by a quadrupole imaging system. We achieved a few micrometers (about 4 micrometers) spatial resolution and about 10 micrometers thickness resolution for a silicon target of 300-600 micron thickness. With addition of dark field images that are captured by selecting electrons with large scattering angle, we show that more useful information in determining external details such as outlines, boundaries and defects can be obtained.
Cold atom electron sources are a promising alternative to traditional photocathode sources for use in ultrafast electron diffraction due to greatly reduced electron temperature at creation, and the potential for a corresponding increase in brightness . Here we demonstrate single-shot, nanosecond electron diffraction from monocrystalline gold using cold electron bunches generated in a cold atom electron source. The diffraction patterns have sufficient signal to allow registration of multiple single-shot images, generating an averaged image with significantly higher signal-to-noise ratio than obtained with unregistered averaging. Reflection high-energy electron diffraction (RHEED) was also demonstrated, showing that cold atom electron sources may be useful in resolving nanosecond dynamics of nanometre scale near-surface structures.
This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا