ﻻ يوجد ملخص باللغة العربية
A lattice Boltzmann model is considered in which the speed of sound can be varied independently of the other parameters. The range over which the speed of sound can be varied is investigated and good agreement is found between simulations and theory. The onset of nonlinear effects due to variations in the speed of sound is also investigated and good agreement is again found with theory. It is also shown that the fluid viscosity is not altered by changing the speed of sound.
Simulating inhomogeneous flows with different characteristic scales in different coordinate directions using the collide-and-stream based lattice Boltzmann methods (LBM) can be accomplished efficiently using rectangular lattice grids. We develop and
A new lattice Boltzmann model for multicomponent ideal gas mixtures is presented. The model development consists of two parts. First, a new kinetic model for Stefan- Maxwell diffusion amongst the species is proposed and realized as a lattice Boltzman
The general characteristics based off-lattice Boltzmann scheme (BKG) proposed by Bardow et~al.(2006), and the discrete unified gas kinetic scheme (DUGKS) are two methods that successfully overcome the time step restriction by the collision time, whic
It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation doma
When boiling occurs in a liquid flow field, the phenomenon is known as forced-convection boiling. We numerically investigate such a boiling system on a cylinder in a flow at a saturated condition. To deal with the complicated liquid-vapor phase-chang