ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the existence and properties of hybrid surface waves forming at interfaces between left-handed materials and dielectric birefringent media. The existence conditions of such waves are found to be highly relaxed in comparison to the original hybrid surface waves, discovered by Dyakonov, in configurations involving birefringent materials and right-handed media. Hybrid surface waves in left-handed materials feature remarkable properties: (i) a high degree of localization and (ii) coexistence of several guided solutions. The existence of several hybrid surface waves for the same parameter set is linked to the birefringent nature of the medium whereas the strong localization is related to the presence of the left-handed material. The hybrid surface modes appear for large areas in the parameter space.
The propagation of electromagnetic surface waves guided by the planar interface of two isotropic chiral materials, namely materials $calA$ and $calB$, was investigated by numerically solving the associated canonical boundary-value problem. Isotropic
We investigate repulsive Casimir force between slabs containing left-handed materials with controllable electromagnetic properties. The sign of Casimir force is determined by the electric and magnetic properties of the materials, and it is shown that
Using detailed simulations we investigate the magnetic response of metamaterials consisting of pairs of parallel slabs or combinations of slabs with wires (including the fishnet design) as the length-scale of the structures is reduced from mm to nm.
By studying the rotations of the polarization of light propagating in right and left handed films, with emphasis on the transmission (Faraday effect) and reflec- tions (Kerr effect) of light and through the use of complex values representing the rota
In the present work, we explore soliton and rogue-like wave solutions in the transmission line analogue of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltagedependent and symmetric capacitance motivated by the recen