ترغب بنشر مسار تعليمي؟ اضغط هنا

From Solitons to Rogue Waves in Nonlinear Left-Handed Metamaterials

85   0   0.0 ( 0 )
 نشر من قبل Yannan Shen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work, we explore soliton and rogue-like wave solutions in the transmission line analogue of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltagedependent and symmetric capacitance motivated by the recently developed ferroelectric barium strontium titanate (BST) thin film capacitor designs. We develop both the corresponding nonlinear dynamical lattice, as well as its reduction via a multiple scales expansion to a nonlinear Schrodinger (NLS) model for the envelope of a given carrier wave. The reduced model can feature either a focusing or a defocusing nonlinearity depending on the frequency (wavenumber) of the carrier. We then consider the robustness of different types of solitary waves of the reduced model within the original nonlinear left-handed medium. We find that both bright and dark solitons persist in a suitable parametric regime, where the reduction to the NLS is valid. Additionally, for suitable initial conditions, we observe a rogue wave type of behavior, that differs significantly from the classic Peregrine rogue wave evolution, including most notably the breakup of a single Peregrine-like pattern into solutions with multiple wave peaks. Finally, we touch upon the behavior of generalized members of the family of the Peregrine solitons, namely Akhmediev breathers and Kuznetsov-Ma solitons, and explore how these evolve in the left-handed transmission line.



قيم البحث

اقرأ أيضاً

In the present work, we examine a prototypical model for the formation of bright breathers in nonlinear left-handed metamaterial lattices. Utilizing the paradigm of nonlinear transmission lines, we build a relevant lattice and develop a quasi-continu um multiscale approximation that enables us to appreciate both the underlying linear dispersion relation and the potential for bifurcation of nonlinear states. We focus here, more specifically, on bright discrete breathers which bifurcate from the lower edge of the linear dispersion relation at wavenumber $k=pi$. Guided by the multiscale analysis, we calculate numerically both the stable inter-site centered and the unstable site-centered members of the relevant family. We quantify the associated stability via Floquet analysis and the Peierls-Nabarro barrier of the energy difference between these branches. Finally, we explore the dynamical implications of these findings towards the potential mobility or lack thereof (pinning) of such breather solutions.
We study the propagation of quasi-discrete microwave solitons in a nonlinear left-handed coplanar waveguide coupled with split ring resonators. By considering the relevant transmission line analogue, we derive a nonlinear lattice model which is studi ed analytically by means of a quasi-discrete approximation. We derive a nonlinear Schr{o}dinger equation, and find that the system supports bright envelope soliton solutions in a relatively wide subinterval of the left-handed frequency band. We perform systematic numerical simulations, in the framework of the nonlinear lattice model, to study the propagation properties of the quasi-discrete microwave solitons. Our numerical findings are in good agreement with the analytical predictions, and suggest that the predicted structures are quite robust and may be observed in experiments.
We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right/left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coup led nonlinear Schr{o}dinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward propagating vector solitons, of the bright-bright, bright-dark and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in a very good agreement with the results of the simulations, at least up to times of the order of the solitons lifetimes.
Left-handed metamaterials make perfect lenses that image classical electromagnetic fields with significantly higher resolution than the diffraction limit. Here we consider the quantum physics of such devices. We show that the Casimir force of two con ducting plates may turn from attraction to repulsion if a perfect lens is sandwiched between them. For optical left-handed metamaterials this repulsive force of the quantum vacuum may levitate ultra-thin mirrors.
We explore the form of rogue wave solutions in a select set of case examples of nonlinear Schrodinger equations with variable coefficients. We focus on systems with constant dispersion, and present three different models that describe atomic Bose-Ein stein condensates in different experimentally relevant settings. For these models, we identify exact rogue wave solutions. Our analytical findings are corroborated by direct numerical integration of the original equations, performed by two different schemes. Very good agreement between numerical results and analytical predictions for the emergence of the rogue waves is identified. Additionally, the nontrivial fate of small numerically induced perturbations to the exact rogue wave solutions is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا