ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of a CCD array for Bragg spectroscopy

192   0   0.0 ( 0 )
 نشر من قبل Martino Trassinelli
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Indelicato




اسأل ChatGPT حول البحث

The average pixel distance as well as the relative orientation of an array of 6 CCD detectors have been measured with accuracies of about 0.5 nm and 50 $mu$rad, respectively. Such a precision satisfies the needs of modern crystal spectroscopy experiments in the field of exotic atoms and highly charged ions. Two different measurements have been performed by illuminating masks in front of the detector array by remote sources of radiation. In one case, an aluminum mask was irradiated with X-rays and in a second attempt, a nanometric quartz wafer was illuminated by a light bulb. Both methods gave consistent results with a smaller error for the optical method. In addition, the thermal expansion of the CCD detectors was characterized between -105 C and -40 C.



قيم البحث

اقرأ أيضاً

The upcoming Extremely Large Telescopes (ELTs) are expected to have the collecting area required to detect potential biosignature gases in the atmosphere of rocky planets around nearby low-mass stars. Some efforts are currently focusing on searching for molecular oxygen (O2), since O2 is a known biosignature on Earth. One of the most promising methods to search for O2 is transmission spectroscopy in which high-resolution spectroscopy is combined with cross-correlation techniques. In this method, high spectral resolution is required both to resolve the exoplanets O2 lines and to separate them from foreground telluric absorption. While current astronomical spectrographs typically achieve a spectral resolution of 100,000, recent studies show that resolutions of 300,000 -- 400,000 are optimal to detect O2 in the atmosphere of earth analogs with the ELTs. Fabry Perot Interferometer (FPI) arrays have been proposed as a relatively low-cost way to reach these resolutions. In this paper, we present performance results for our 2-FPI array lab prototype, which reaches a resolving power of 600,000. We further discuss the use of multi-cavity etalons (dualons) to be resolution boosters for existing spectrographs.
222 - E. Giese , A. Roura , G. Tackmann 2013
The use of retro-reflection in light-pulse atom interferometry under microgravity conditions naturally leads to a double-diffraction scheme. The two pairs of counterpropagating beams induce simultaneously transitions with opposite momentum transfer t hat, when acting on atoms initially at rest, give rise to symmetric interferometer configurations where the total momentum transfer is automatically doubled and where a number of noise sources and systematic effects cancel out. Here we extend earlier implementations for Raman transitions to the case of Bragg diffraction. In contrast with the single-diffraction case, the existence of additional off-resonant transitions between resonantly connected states precludes the use of the adiabatic elimination technique. Nevertheless, we have been able to obtain analytic results even beyond the deep Bragg regime by employing the so-called method of averaging, which can be applied to more general situations of this kind. Our results have been validated by comparison to numerical solutions of the basic equations describing the double-diffraction process.
We present the uncertainty discussion of a recent experiment performed at the GSI storage ring ESR for the accurate energy measurement of the He-like uranium 1s2p3P2- 1s2s3S1 intra-shell transition. For this propose we used a Johann-type Bragg spectr ometer that enables to obtain a relative energy measurement between the He-like uranium transition, about 4.51 keV, and a calibration x-ray source. As reference, we used the Ka fluorescence lines of zinc and the Li-like uranium 1s22p2P3/2 - 1 s22s 2S1/2 intra-shell transition from fast ions stored in the ESR. A comparison of the two different references, i.e., stationary and moving x-ray source, and a discussion of the experimental uncertainties is presented.
138 - X. Du , Shoupu Wan , Emek Yesilada 2007
Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubba rd model. For fixed wavevector, the resonant frequency of the excitation is found to decrease with increasing lattice depth. A numerical calculation of the resonant frequencies based on Bogoliubov theory shows a less steep rate of decrease than the measurements.
We present a comprehensive study of the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover in fermionic $^6$Li using Bragg spectroscopy. A smooth transition from molecular to atomic spectra is observed with a clear signature of pairing at and above unitarity. These spectra probe the dynamic and static structure factors of the gas and provide a direct link to two-body correlations. We have characterised these correlations and measured their density dependence across the broad Feshbach resonance at 834 G.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا