ﻻ يوجد ملخص باللغة العربية
The average pixel distance as well as the relative orientation of an array of 6 CCD detectors have been measured with accuracies of about 0.5 nm and 50 $mu$rad, respectively. Such a precision satisfies the needs of modern crystal spectroscopy experiments in the field of exotic atoms and highly charged ions. Two different measurements have been performed by illuminating masks in front of the detector array by remote sources of radiation. In one case, an aluminum mask was irradiated with X-rays and in a second attempt, a nanometric quartz wafer was illuminated by a light bulb. Both methods gave consistent results with a smaller error for the optical method. In addition, the thermal expansion of the CCD detectors was characterized between -105 C and -40 C.
The upcoming Extremely Large Telescopes (ELTs) are expected to have the collecting area required to detect potential biosignature gases in the atmosphere of rocky planets around nearby low-mass stars. Some efforts are currently focusing on searching
The use of retro-reflection in light-pulse atom interferometry under microgravity conditions naturally leads to a double-diffraction scheme. The two pairs of counterpropagating beams induce simultaneously transitions with opposite momentum transfer t
We present the uncertainty discussion of a recent experiment performed at the GSI storage ring ESR for the accurate energy measurement of the He-like uranium 1s2p3P2- 1s2s3S1 intra-shell transition. For this propose we used a Johann-type Bragg spectr
Bragg spectroscopy is used to measure excitations of a trapped, quantum-degenerate gas of 87Rb atoms in a 3-dimensional optical lattice. The measurements are carried out over a range of optical lattice depths in the superfluid phase of the Bose-Hubba
We present a comprehensive study of the Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover in fermionic $^6$Li using Bragg spectroscopy. A smooth transition from molecular to atomic spectra is observed with a clear signature of