ترغب بنشر مسار تعليمي؟ اضغط هنا

On the recollision-free excitation of krypton during ultrafast multi-electron tunnel ionization

72   0   0.0 ( 0 )
 نشر من قبل William Bryan
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The probability of multiple ionization of krypton by 50 femtosecond circularly polarized laser pulses, independent of the optical focal geometry, has been obtained for the first time. The excellent agreement over the intensity range 10 TWcm-2 to 10 PWcm-2 with the recent predictions of A. S. Kornev et al [Phys. Rev. A v.68, art.043414 (2003)] provides the first experimental confirmation that non-recollisional electronic excitation can occur in strong field ionization. This is particularly true for higher stages of ionization, when the laser intensity exceeds 1 PWcm-2 as the energetic departure of the ionized electron(s) diabatically distorts the wavefunctions of the bound electrons. By scaling the probability of ionization by the focal volume, we discusses why this mechanism was not apparent in previous studies.

قيم البحث

اقرأ أيضاً

Modern intense ultrafast pulsed lasers generate an electric field of sufficient strength to permit tunnel ionization of the valence electrons in atoms. This process is usually treated as a rapid succession of isolated events, in which the states of t he remaining electrons are neglected. Such electronic interactions are predicted to be weak, the exception being recollision excitation and ionization caused by linearly-polarized radiation. In contrast, it has recently been suggested that intense field ionization may be accompanied by a two-stage `shake-up reaction. Here we report a unique combination of experimental techniques that enables us to accurately measure the tunnel ionization probability for argon exposed to 50 femtosecond laser pulses. Most significantly for the current study, this measurement is independent of the optical focal geometry, equivalent to a homogenous electric field. Furthermore, circularly-polarized radiation negates recollision. The present measurements indicate that tunnel ionization results in simultaneous excitation of one or more remaining electrons through shake-up. From an atomic physics standpoint, it may be possible to induce ionization from specific states, and will influence the development of coherent attosecond XUV radiation sources. Such pulses have vital scientific and economic potential in areas such as high-resolution imaging of in-vivo cells and nanoscale XUV lithography.
The importance of multi-electron dynamics during the tunnel ionization of a correlated quantum system is investigated. By comparison of the solution of the time-dependent Schru007fodinger equation (TDSE) with the time-dependent configuration interact ion singles approach (TDCIS), we demonstrate the importance of a multi-electron description of the tunnel ionization process especially for weakly confined quantum systems. Within this context, we observe that adiabatic driving by an intense light field can even enhance the correlations between still trapped electrons.
Consensus has been reached that recollision, as the most important post-tunneling process, is responsible for nonsequential double ionization process in intense infrared laser field, however, its effect has been restricted to interaction between the first ionized electron and the residual univalent ion so far. Here we identify the key role of recollision between the second ionized electron and the divalent ion in the below-threshold nonsequential double ionization process by introducing a Coulomb-corrected quantum-trajectories method, which enables us to well reproduce the experimentally observed cross-shaped and anti-correlated patterns in correlated two-electron momentum distributions, and also the transition between these two patterns. Being significantly enhanced relatively by the recapture process, recolliding trajectories of the second electron excited by the first- or third-return recolliding trajectories of the first electron produce the cross-shaped or anti-correlated distributions, respectively. And the transition is induced by the increasing contribution of the third return with increasing pulse duration. Our work provides new insight into atomic ionization dynamics and paves the new way to imaging of ultrafast dynamics of atoms and molecules in intense laser field.
Measuring the delay for an electron to emerge from different states is one of the major achievements of attosecond science. This delay can have two origins - the electron wave packet is reshaped during departure by the electrostatic field of the ioni zing medium or it is modified by dynamic interaction with the remaining electrons. Most experiments have observed the former, but confirmation requires a complex calculation. A direct measurement of multielectron dynamics is needed. Photo-recombination - the inverse of photoionization - occurs naturally during electron recollision and can be measured by combining a perturbing beam to modify the recollision electron before recombination. These in situ methods allow us to unambiguously isolate multielectron dynamics - the reference being the spectral phase of an attosecond pulse simultaneously measured in spectral regions without multielectron interaction. Here, we measure the group delay of the recollision electron caused by plasmonic resonance dynamics in Xe, simulate the in situ measured spectral phase of a recollision electron generated in the presence of the plasmonic resonance in C$_{60}$ and present a corresponding semi-classical theory based on the strong-field approximation. Our results suggest that in situ techniques, together with 300 eV recollision electrons, will allow the ultimate time response of electronic matter to be measured.
When intense light irradiates a quantum system, an ionizing electron recollides with its parent ion within the same light cycle and, during that very brief (few femtosecond) encounter, its kinetic energy sweeps from low to high energy and back. There fore, recollision offers unprecedented time resolution and it is the foundation on which attosecond science is built. For simple systems, recolliding trajectories are shaped by the strong field acting together with the Coulomb potential and they can be readily calculated and measured. However, for more complex systems, multielectron effects are also important because they dynamically alter the recolliding wave packet trajectories. Here, we theoretically study Fano resonances, one of the most accessible multielectron effects, and we show how multielectron dynamics can be unambiguously isolated when we use in situ measurement. The general class of in situ measurement can provide key information needed for time-dependent ab initio electronic structure theory and will allow us to measure the ultimate time response of matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا