ترغب بنشر مسار تعليمي؟ اضغط هنا

A conclusive demonstration of vibrational pumping and determination of SERS cross sections

264   0   0.0 ( 0 )
 نشر من قبل Pablo Etchegoin
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide conclusive demonstration of vibrational pumping under Surface Enhanced Raman Scattering (SERS) conditions by performing anti-Stokes/Stokes ratio measurements down to 10 K using dried silver colloids, the dye rhodamine 6G and 676 nm laser excitation. The method we propose allows the measurement of the SERS cross sections for different modes and the determination of the asymmetry between the anti-Stokes and Stokes SERS cross sections.

قيم البحث

اقرأ أيضاً

We present an in-depth analysis of the experimental estimation of cross sections in Surface Enhanced Raman Scattering (SERS) by vibrational pumping. The paper highlights the advantages and disadvantages of the technique, pinpoints the main aspects an d limitations, and provides the underlying physical concepts to interpret the experimental results. Examples for several commonly used SERS probes are given, and a discussion on future possible developments is also presented.
It is demonstrated that the reason of SERS on dielectric and semiconductor substrates is the enhancement of the electric field in the regions of the tops of the surface roughness with very small radius, or a very large curvature. The enhancement depe nds on the dielectric constant of the substrate and is stronger for a larger dielectric constant. It is indicated that the enhancement on dielectrics and semiconductors is weaker than on metals with the same modulus of the dielectric constant. The result obtained is confirmed by experimental data on the enhancement coefficients obtained for various semiconductor and dielectric substrates.
Einstein-Podolsky-Rosen steering is a quantum phenomenon wherein one party influences, or steers, the state of a distant partys particle beyond what could be achieved with a separable state, by making measurements on one half of an entangled state. T his type of quantum nonlocality stands out through its asymmetric setting, and even allows for cases where one party can steer the other, but where the reverse is not true. A series of experiments have demonstrated one-way steering in the past, but all were based on significant limiting assumptions. These consisted either of restrictions on the type of allowed measurements, or of assumptions about the quantum state at hand, by mapping to a specific family of states and analysing the ideal target state rather than the real experimental state. Here, we present the first experimental demonstration of one-way steering free of such assumptions. We achieve this using a new sufficient condition for non-steerability, and, although not required by our analysis, using a novel source of extremely high-quality photonic Werner states.
The SEHRS and SERS spactra of 4,4 - Bipyridine are analyzed on the base of the Dipole-Quadrupole theory for two possible geometries of the molecule. It is demonstrated that there appear strong lines caused by vibrations transforming after a unit irre ducible representation both for the geometry with D2 and D2h symmetry groups, which may probably describe the symmetry properties of the molecule. Appearance of these lines is associated with a strong quadrupole light-molecule interaction, which arises in nano size rregions of sharp roughness of the metal. In addition, there are the lines caused by contributions from both the vibrations transforming after the unit irredicible representations A or Ag and the representations B1 or B1u, respectively, which describe transformational properties of the Ez component of the dipole moment, which is perpendicular to the surface for both geometries. This result is associated with a specific geometry of the molecule, when the indicated vibrations can be nearly degenerated and can not be resolved by the SEHRS and SERS spectra analysis. This issue is in a full compliance with the results of the SEHRS and SERS Dipole-Quadrupole theory.
The experimental thermal neutron cross sections of the twenty proteinogenic amino acids have been measured over the incident-neutron energy range spanning from 1 meV to 10 keV and data have been interpreted using the multi-phonon expansion based on f irst-principles calculations. The scattering cross section, dominated by the incoherent inelastic contribution from the hydrogen atoms, can be rationalised in terms of the average contributions of different functional groups, thus neglecting their correlation. These results can be used for modelling the total neutron cross sections of complex organic systems like proteins, muscles, or human tissues from a limited number of starting input functions. This simplification is of crucial importance for fine-tuning of transport simulations used in medical applications, including boron neutron capture therapy as well as secondary neutrons-emission induced during proton therapy. Moreover, the parametrized neutron cross sections allow a better treatment of neutron scattering experiments, providing detailed sample self-attenuation corrections for a variety of biological and soft-matter systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا