ترغب بنشر مسار تعليمي؟ اضغط هنا

The Theory of SERS on Dielectrics and Semiconductors

63   0   0.0 ( 0 )
 نشر من قبل Aleksey Polubotko
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is demonstrated that the reason of SERS on dielectric and semiconductor substrates is the enhancement of the electric field in the regions of the tops of the surface roughness with very small radius, or a very large curvature. The enhancement depends on the dielectric constant of the substrate and is stronger for a larger dielectric constant. It is indicated that the enhancement on dielectrics and semiconductors is weaker than on metals with the same modulus of the dielectric constant. The result obtained is confirmed by experimental data on the enhancement coefficients obtained for various semiconductor and dielectric substrates.

قيم البحث

اقرأ أيضاً

The SEHRS and SERS spactra of 4,4 - Bipyridine are analyzed on the base of the Dipole-Quadrupole theory for two possible geometries of the molecule. It is demonstrated that there appear strong lines caused by vibrations transforming after a unit irre ducible representation both for the geometry with D2 and D2h symmetry groups, which may probably describe the symmetry properties of the molecule. Appearance of these lines is associated with a strong quadrupole light-molecule interaction, which arises in nano size rregions of sharp roughness of the metal. In addition, there are the lines caused by contributions from both the vibrations transforming after the unit irredicible representations A or Ag and the representations B1 or B1u, respectively, which describe transformational properties of the Ez component of the dipole moment, which is perpendicular to the surface for both geometries. This result is associated with a specific geometry of the molecule, when the indicated vibrations can be nearly degenerated and can not be resolved by the SEHRS and SERS spectra analysis. This issue is in a full compliance with the results of the SEHRS and SERS Dipole-Quadrupole theory.
The SERS spectra of the phthalocianine molecule, adsorbed on the gallium phosphide substrate are investigated. It is demonstrated that there appear strong lines, which are forbidden in usual Raman scattering. Analysis of the spectra indicates that th ese lines are associated with a strong quadrupole light-molecule interaction and also by a strong enhancement of the tangential components of the electric field on the surface. As it was demonstrated earlier, the last effect is characteristic for SERS on semiconductor and dielectric substrates, where there is the enhancement not only of the normal, but of the tangential components of the electric field on the surface.
We present an in-depth analysis of the experimental estimation of cross sections in Surface Enhanced Raman Scattering (SERS) by vibrational pumping. The paper highlights the advantages and disadvantages of the technique, pinpoints the main aspects an d limitations, and provides the underlying physical concepts to interpret the experimental results. Examples for several commonly used SERS probes are given, and a discussion on future possible developments is also presented.
The SERS spectrum of hydroquinone, adsorbed on nanoparticles of titanium dioxide is analyzed. It is pointed out that the enhancement is stronger for larger mean size of nanoparticles that is in an agreement with the electrostatic approximation. In ad dition it is found that there are the lines, which are forbidden in usual Raman spectra. Along with this there is the enhancement, caused both by the normal and tangential components of the electric field. This result is in agreement with the theory of SERS on semiconductor and dielectric substrates. Discovery of the forbidden lines indicates sufficiently large role of the strong quadrupole light-molecule interaction in such a system.
We present a critical overview comparing theoretical predictions and measurements of Van der Waals dispersion forces in media on the basis of the respective Hamaker constants. To quantify the agreement, we complement the reported experimental errors with those for the theoretical predictions, which are due to uncertainties in the underlying spectroscopic data. Our main finding is that the theoretical errors are often larger than their experimental counterparts. Within these uncertainties, the comparison confirms the standard Lifshitz theory based on the Abraham electromagnetic stress tensor against the recently suggested alternative account on the basis of the Maxwell stress tensor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا