ترغب بنشر مسار تعليمي؟ اضغط هنا

Motion-Induced Magnetic Resonance of Rb Atoms in a Periodic Magnetostatic Field

87   0   0.0 ( 0 )
 نشر من قبل Atsushi Hatakeyama
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that transitions between Zeeman-split sublevels of Rb atoms are resonantly induced by the motion of the atoms (velocity: about 100 m/s) in a periodic magnetostatic field (period: 1 mm) when the Zeeman splitting corresponds to the frequency of the magnetic field experienced by the moving atoms. A circularly polarized laser beam polarizes Rb atoms with a velocity selected using the Doppler effect and detects their magnetic resonance in a thin cell, to which the periodic field is applied with the arrays of parallel current-carrying wires.



قيم البحث

اقرأ أيضاً

The electromagnetically induced transparency (EIT) observations in two $Lambda$-systems of $^{87}Rb$ atom, $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_{3/2} F=1rangle leftarrow |5^{2}S_{1/2} F=2rangle$ and $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_ {3/2} F=2rangle leftarrow |5^{2}S_{1/2} F=2rangle$, have been investigated in detail and the results are found consistent with our proposed theoretical models. The second $Lambda$-system provides EIT signal with higher magnitude than the first system, both in absence and in presence of an applied magnetic field. The observed steeper slope of the EIT signal in presence of the magnetic field can enable one to achieve tight frequency locking of lasers using these EIT signals.
Pulsed field ionization of high-$n$ (90 $leq n leq$ 150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated $n$ region, where the field values at the lower peak do not almost depend on the excitation energy in the manifold, while those at the higher peak increase with increasing excitation energy. The fraction of the higher peak component to the total ionization signals increases with increasing $n$, exceeding 80% at $n$ = 147. Characteristic behavior of the peak component and the comparison with theoretical predictions indicate that the higher peak component is due to the tunneling process. The obtained results show for the first time that the tunneling process plays increasingly the dominant role at such highly excited nonhydrogenic Rydberg atoms.
We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multilayered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic fi lms so that the direction of magnetization alternated at each level. The other grating was assembled so that the magnetization at each level was aligned. For both types of grating, the experimental results were in good agreement with our calculations. We studied the feasibility of extending the frequency band of the grating and narrowing its resonance linewidth by performing calculations. For magnetic resonance precision spectroscopy, we conclude that the multi-layered transmission magnetic grating can generate periodic fields with narrower linewidths at higher frequencies when a larger number of layers is assembled at a shorter period length. Moreover, the frequency band of this type of grating can potentially achieve frequencies of up to hundreds of PHz.
437 - C. Ates , A. Eisfeld , J. M. Rost 2007
We show that nuclear motion of Rydberg atoms can be induced by resonant dipole-dipole interactions that trigger the energy transfer between two energetically close Rydberg states. How and if the atoms move depends on their initial arrangement as well as on the initial electronic excitation. Using a mixed quantum/classical propagation scheme we obtain the trajectories and kinetic energies of atoms, initially arranged in a regular chain and prepared in excitonic eigenstates. The influence of off-diagonal disorder on the motion of the atoms is examined and it is shown that irregularity in the arrangement of the atoms can lead to an acceleration of the nuclear dynamics.
118 - Y. Kobayashi , Y. Shiraishi , 2010
An atom moving in a spatially periodic field experiences a temporary periodic perturbation and undergoes a resonance transition between atomic internal states when the transition frequency is equal to the atomic velocity divided by the field period. We demonstrated that spin nutation was induced by this resonant transition in a polarized rubidium (Rb) atomic beam passing through a magnetic lattice. The lattice was produced by current flowing through an array of parallel wires crossing the beam. This array structure, reminiscent of a multiwire chamber for particle detection, allowed the Rb beam to pass through the lattice at a variety of incident angles. The dephasing of spin nutation was reduced by varying the incident angle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا