ﻻ يوجد ملخص باللغة العربية
We demonstrate that transitions between Zeeman-split sublevels of Rb atoms are resonantly induced by the motion of the atoms (velocity: about 100 m/s) in a periodic magnetostatic field (period: 1 mm) when the Zeeman splitting corresponds to the frequency of the magnetic field experienced by the moving atoms. A circularly polarized laser beam polarizes Rb atoms with a velocity selected using the Doppler effect and detects their magnetic resonance in a thin cell, to which the periodic field is applied with the arrays of parallel current-carrying wires.
The electromagnetically induced transparency (EIT) observations in two $Lambda$-systems of $^{87}Rb$ atom, $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_{3/2} F=1rangle leftarrow |5^{2}S_{1/2} F=2rangle$ and $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_
Pulsed field ionization of high-$n$ (90 $leq n leq$ 150) manifold states in Rb Rydberg atoms has been investigated in high slew-rate regime. Two peaks in the field ionization spectra were systematically observed for the investigated $n$ region, where
We measured the magnetic resonance of rubidium atoms passing through periodic magnetic fields generated by two types of multilayered transmission magnetic grating. One of the gratings reported here was assembled by stacking four layers of magnetic fi
We show that nuclear motion of Rydberg atoms can be induced by resonant dipole-dipole interactions that trigger the energy transfer between two energetically close Rydberg states. How and if the atoms move depends on their initial arrangement as well
An atom moving in a spatially periodic field experiences a temporary periodic perturbation and undergoes a resonance transition between atomic internal states when the transition frequency is equal to the atomic velocity divided by the field period.