ترغب بنشر مسار تعليمي؟ اضغط هنا

Electromagnetically Induced Transparency in $Lambda$-systems of $^{87}Rb$ atom in magnetic field

78   0   0.0 ( 0 )
 نشر من قبل Charu Mishra
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electromagnetically induced transparency (EIT) observations in two $Lambda$-systems of $^{87}Rb$ atom, $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_{3/2} F=1rangle leftarrow |5^{2}S_{1/2} F=2rangle$ and $|5^{2}S_{1/2} F=1rangle rightarrow |5^{2}P_{3/2} F=2rangle leftarrow |5^{2}S_{1/2} F=2rangle$, have been investigated in detail and the results are found consistent with our proposed theoretical models. The second $Lambda$-system provides EIT signal with higher magnitude than the first system, both in absence and in presence of an applied magnetic field. The observed steeper slope of the EIT signal in presence of the magnetic field can enable one to achieve tight frequency locking of lasers using these EIT signals.



قيم البحث

اقرأ أيضاً

The electromagnetically induced transparency (EIT) phenomenon has been investigated in a $Lambda$-system of the $^{87}$Rb D$_1$ line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates $gamma_{rel}$ are used: a Rb cell with antirelaxation coating ($Lsim$1 cm) and a Rb nanometric-thin cell (nano-cell) with thickness of the atomic vapor column $L$=795nm. For the EIT in the nano-cell, we have the usual EIT resonances characterized by a reduction in the absorption (i.e. dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (i.e. bright resonances). We suppose that such unusual behavior of the EIT resonances (i.e. the reversal of the sign from DR to BR) is caused by the influence of alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.
Pulse delay with the group velocity dispersion (GVD) characteristics was studied in the V-type electromagnetically induced transparency in the hyperfine levels of $^{85}Rb$ atoms with a closed system configuration. The phase coherency between the pum p and the probe laser beams was maintained. We studied the pulse delay and the group velocity dispersion characteristics with the variation of the pump Rabi frequency taking temperature as a parameter. We observed a maximum of $268$ $ns$ pulse delay for $21.24 MHz$ pump Rabi frequency at $55^0C$ temperature of the Rb vapour cell. For a better understanding of the experimental results, we have derived an analytical solution for the delay characteristics considering the thermal averaging. The analytical solution was derived for a three level V-type system. The theoretical plots of the delay and the group velocity dispersion show the same characteristics as we observed in the experiment. This analytical approach can be further generalized for the higher level schemes to calculate different quantities such as susceptibility, group velocity delay or group velocity dispersion characteristics.
We report electromagnetically induced transparency for the D1 and D2 lines in $^{6}$Li in both a vapour cell and an atomic beam. Electromagnetically induced transparency is created using co-propagating mutually coherent laser beams with a frequency d ifference equal to the hyperfine ground state splitting of 228.2 MHz. The effects of various optical polarization configurations and applied magnetic fields are investigated. In addition, we apply an optical Ramsey spectroscopy technique which further reduces the observed resonance width.
We theoretically investigate a double-{Lambda} electromagnetically induced transparency (EIT) system. The property of the double-{Lambda} medium with a closed-loop configuration depends on the relative phase of the applied laser fields. This phase-de pendent mechanism differentiates the double-{Lambda} medium from the conventional Kerr-based nonlinear medium, e.g., EIT-based nonlinear medium discussed by Harris and Hau [Phys. Rev. Lett. 82, 4611 (1999)], which depends only on the intensities of the applied laser fields. Steady-state analytical solutions for the phase-dependent system are obtained by solving the Maxwell-Bloch equations. In addition, we discuss efficient all-optical phase modulation and coherent light amplification based on the proposed double-{Lambda} EIT scheme.
We observe and investigate, both experimentally and theoretically, electromagnetically-induced transparency experienced by evanescent fields arising due to total internal reflection from an interface of glass and hot rubidium vapor. This phenomenon m anifests itself as a non-Lorentzian peak in the reflectivity spectrum, which features a sharp cusp with a sub-natural width of about 1 MHz. The width of the peak is independent of the thickness of the interaction region, which indicates that the main source of decoherence is likely due to collisions with the cell walls rather than diffusion of atoms. With the inclusion of a coherence-preserving wall coating, this system could be used as an ultra-compact frequency reference.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا