ترغب بنشر مسار تعليمي؟ اضغط هنا

Bi-Analyte Surface Enhanced Raman Scattering for unambiguous evidence of single molecule detection

70   0   0.0 ( 0 )
 نشر من قبل Pablo Etchegoin
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A method is proposed to pin down an unambiguous proof for single molecule surface enhanced Raman spectroscopy (SERS). The simultaneous use of two analyte molecules enables a clear confirmation of the single (or few) molecule nature of the signals. This method eliminates most of the uncertainties associated with low dye concentrations in previous experiments. It further shows that single-molecule signals are very common in SERS, both in liquids and on dry substrates.



قيم البحث

اقرأ أيضاً

Stimulated Raman scattering (SRS) microscopy allows for high-speed label-free chemical imaging of biomedical systems. The imaging sensitivity of SRS microscopy is limited to ~10 mM for endogenous biomolecules. Electronic pre-resonant SRS allows detec tion of sub-micromolar chromophores. However, label-free SRS detection of single biomolecules having extremely small Raman cross-sections (~10-30 cm2 sr-1) remains unreachable. Here, we demonstrate plasmon-enhanced stimulated Raman scattering (PESRS) microscopy with single-molecule detection sensitivity. Incorporating pico-Joule laser excitation, background subtraction, and a denoising algorithm, we obtained robust single-pixel SRS spectra exhibiting the statistics of single-molecule events. Single-molecule detection was verified by using two isotopologues of adenine. We further demonstrated the capability of applying PESRS for biological applications and utilized PESRS to map adenine released from bacteria due to starvation stress. PESRS microscopy holds the promise for ultrasensitive detection of molecular events in chemical and biomedical systems.
253 - A.M. Polubotko 2013
The review is devoted to explanation of SERS in terms of the dipole and quadrupole light-molecule interactions arising in surface fields strongly varying in space in the region of the strongly irregular surface roughness. The main SERS characteristic s, the theory of electromagnetic fields near some model kinds of rough surfaces and some other systems, the theory of SERS Raman tensor for arbitrary and symmetrical molecules, selection rules and analysis of the SER spectra, some anomalies in the SER spectra of symmetrical molecules for some specific conditions, electrodynamic forbiddance of the quadrupole scattering mechanism for the methane molecule and molecules with cubic symmetry groups are considered. The huge enhancement and blinking of the SERS signal arising in the phenomenon of Single Molecule detection by the SERS method are explained. The above theory is compared with some another SERS mechanisms, and the phenomena accompanying SERS are accounted for. It is demonstrated that the theory is in a good agreement with the experiment and explains quite a number of characteristics related to the SERS phenomenon.
Surface Enhanced Raman Scattering (SERS) and Surface-Enhanced Fluorescence (SEF) are studied within the framework of modified Spontaneous Emission (SE), and similarities and differences are highlighted. This description sheds new light into several a spects of the SERS electromagnetic enhancement. In addition, combined with the optical reciprocity theorem it also provides a rigorous justification of a generalized version of the widely used SERS enhancement factor proportional to the fourth power of the field ($|E|^4$). We show, in addition, that this approach also applies to the calculation of Surface-Enhanced Fluorescence cross-sections thus presenting both phenomena SERS and SEF within a unified framework.
Surface enhanced Raman scattering (SERS) process results in a tremendous increase of Raman scattering cross section of molecules adsorbed to plasmonic metals and influenced by numerous physico-chemical factors such as geometry and optical properties of the metal surface, orientation of chemisorbed molecules and chemical environment. While SERS holds promise for single molecule sensitivity and optical sensing of DNA sequences, more detailed understanding of the rich physico-chemical interplay between various factors is needed to enhance predictive power of existing and future SERS-based DNA sensing platforms. In this work we report on experimental results indicating that SERS spectra of adsorbed single-stranded DNA (ssDNA) isomers depend on the order on which individual bases appear in the 3-base long ssDNA due to intra-molecular interaction between DNA bases. Furthermore, we experimentally demonstrate that the effect holds under more general conditions when the molecules dont experience chemical enhancement due to resonant charge transfer effect and also under standard Raman scattering without electromagnetic or chemical enhancements. Our numerical simulations qualitatively support the experimental findings and indicate that base permutation results in modification of both Raman and chemically enhanced Raman spectra.
We make systematic measurements of Raman anti-Stokes/Stokes (aS/S) ratios using two different laser excitations (514 and 633 nm) of rhodamine 6G (RH6G) on dried Ag colloids over a wide range of temperatures (100 to 350 K). We show that a temperature scan allows the separation of the contributions to the aS/S ratios from {it resonance effects} and {it heating/pumping}, thus decoupling the two main aspects of the problem. The temperature rise is found to be larger when employing the 633 nm laser. In addition, we find evidence for mode specific vibrational pumping at higher laser power densities. We analyze our results in the framework of ongoing discussion on laser heating/pumping under SERS conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا