ﻻ يوجد ملخص باللغة العربية
Stimulated Raman scattering (SRS) microscopy allows for high-speed label-free chemical imaging of biomedical systems. The imaging sensitivity of SRS microscopy is limited to ~10 mM for endogenous biomolecules. Electronic pre-resonant SRS allows detection of sub-micromolar chromophores. However, label-free SRS detection of single biomolecules having extremely small Raman cross-sections (~10-30 cm2 sr-1) remains unreachable. Here, we demonstrate plasmon-enhanced stimulated Raman scattering (PESRS) microscopy with single-molecule detection sensitivity. Incorporating pico-Joule laser excitation, background subtraction, and a denoising algorithm, we obtained robust single-pixel SRS spectra exhibiting the statistics of single-molecule events. Single-molecule detection was verified by using two isotopologues of adenine. We further demonstrated the capability of applying PESRS for biological applications and utilized PESRS to map adenine released from bacteria due to starvation stress. PESRS microscopy holds the promise for ultrasensitive detection of molecular events in chemical and biomedical systems.
A method is proposed to pin down an unambiguous proof for single molecule surface enhanced Raman spectroscopy (SERS). The simultaneous use of two analyte molecules enables a clear confirmation of the single (or few) molecule nature of the signals. Th
Stimulated Raman spectroscopy has become a powerful tool to study the spatiodynamics of molecular bonds with high sensitivity, resolution and speed. However, sensitivity and speed of state-of-the-art stimulated Raman spectroscopy are currently limite
Nonlinear optical microscopy techniques have emerged as a set of successful tools for biological imaging. Stimulated emission microscopy belongs to a small subset of pump-probe techniques which can image non-fluorescent samples without requiring fluo
Laser pulses interaction with tobacco mosaic virus (TMV) in Tris-HCl pH7.5 buffer and in water has been investigated. 20 ns ruby laser pulses have been used for excitation. Spectrum of the light passing through the sample was registered with the help
A simple physical mechanism of stimulated light scattering on nanoscale objects in water suspension similar to Langmuir waves mechanism in plasma is proposed. The proposed mechanism is based on a dipole interaction between the light wave and the non-