ﻻ يوجد ملخص باللغة العربية
The primary emphasis of this study has been to explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. Restricting our consideration to the genoise, one of the basic cakes of classic French cuisine, we have obtained a semi-empirical formula for its baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The formula, which is based on the Diffusion equation, has three adjustable parameters whose values are estimated from data obtained by baking genoises in cylindrical pans of various diameters. The resulting formula for the baking time exhibits the scaling behavior typical of diffusion processes, i.e. the baking time is proportional to the (characteristic length scale)^2 of the cake. It also takes account of evaporation of moisture at the top surface of the cake, which appears to be a dominant factor affecting the baking time of a cake. In solving this problem we have obtained solutions of the Diffusion equation which are interpreted naturally and straightforwardly in the context of heat transfer; however, when interpreted in the context of the Schrodinger equation, they are somewhat peculiar. The solutions describe a system whose mass assumes different values in two different regions of space. Furthermore, the solutions exhibit characteristics similar to the evanescent modes associated with light waves propagating in a wave guide. When we consider the Schrodinger equation as a non-relativistic limit of the Klein-Gordon equation so that it includes a mass term, these are no longer solutions.
Quantum technology is seeing a remarkable explosion in interest due to a wave of successful commercial technology. As a wider array of engineers and scientists are needed, it is time we rethink quantum educational paradigms. Current approaches often
We show that a pseudospectral representation of the wavefunction using multiple spatial domains of variable size yields a highly accurate, yet efficient method to solve the time-dependent Schrodinger equation. The overall spatial domain is split into
The direct simulation of the dynamics of second sound in graphitic materials remains a challenging task due to lack of methodology for solving the phonon Boltzmann equation in such a stiff hydrodynamic regime. In this work, we aim to tackle this chal
We present a method to compute optical spectra and exciton binding energies of molecules and solids based on the solution of the Bethe-Salpeter equation (BSE) and the calculation of the screened Coulomb interaction in finite field. The method does no
We solve rigorously the time dependent Schrodinger equation describing electron emission from a metal surface by a laser field perpendicular to the surface. We consider the system to be one-dimensional, with the half-line $x<0$ corresponding to the b