ﻻ يوجد ملخص باللغة العربية
We show that a pseudospectral representation of the wavefunction using multiple spatial domains of variable size yields a highly accurate, yet efficient method to solve the time-dependent Schrodinger equation. The overall spatial domain is split into non-overlapping intervals whose size is chosen according to the local de Broglie wavelength. A multi-domain weak formulation of the Schrodinger equation is obtained by representing the wavefunction by Lagrange polynomials with compact support in each domain, discretized at the Legendre-Gauss-Lobatto points. The resulting Hamiltonian is sparse, allowing for efficient diagonalization and storage. Accurate time evolution is carried out by the Chebychev propagator, involving only sparse matrix-vector multiplications. Our approach combines the efficiency of mapped grid methods with the accuracy of spectral representations based on Gaussian quadrature rules and the stability and convergence properties of polynomial propagators. We apply this method to high-harmonic generation and examine the role of the initial state for the harmonic yield near the cutoff.
Pseudospectral numerical schemes for solving the Dirac equation in general static curved space are derived using a pseudodifferential representation of the Dirac equation along with a simple Fourier-basis technique. Owing to the presence of non-const
Three pseudospectral algorithms are described (Euler, leapfrog and trapez) for solving numerically the time dependent nonlinear Schroedinger equation in one, two or three dimensions. Numerical stability regions in the parameter space are determined f
Using a recently developed technique to solve Schrodinger equation for constant mass, we studied the regime in which mass varies with position i.e position dependent mass Schrodinger equation(PDMSE). We obtained an analytical solution for the PDMSE a
The primary emphasis of this study has been to explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. Restricting our consideration to the genoise, one of the basic cakes
The Schr{o}dinger equation is solved exactly for some well known potentials. Solutions are obtained reducing the Schr{o}dinger equation into a second order differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov