ﻻ يوجد ملخص باللغة العربية
We present a lifetime measurements of the 6s level of rubidium. We use a time-correlated single-photon counting technique on two different samples of rubidium atoms. A vapor cell with variable rubidium density and a sample of atoms confined and cooled in a magneto-optical trap. The 5P_{1/2} level serves as the resonant intermediate step for the two step excitation to the 6s level. We detect the decay of the 6s level through the cascade fluorescence of the 5P_{3/2} level at 780 nm. The two samples have different systematic effects, but we obtain consistent results that averaged give a lifetime of 45.57 +- 0.17 ns.
We present a precise measurement of the lifetime of the 6p 2P_1/2 excited state of a single trapped ytterbium ion (Yb+). A time-correlated single-photon counting technique is used, where ultrafast pulses excite the ion and the emitted photons are cou
We present a measurement of the branching fractions for decay from the long-lived $5D_{5/2}$ level in Ba. The branching fraction for decay into the $6S_{1/2}$ ground state was found to be $0.846(25)_{mathrm{stat}}(4)_{mathrm{sys}}$. We also report an
The intrinsic lifetime of the upper level in the bound-bound 3d$^9$4s$^2$ $^2$D$_{3/2}$ $rightarrow$ 3d$^9$4s$^2$ $^2$D$_{5/2}$ radiative transition in Ni$^-$ was measured to be 15.1 $pm$ 0.4 s. The experiment was performed at cryogenic temperatures
We present lifetime measurements of the 7S1/2 level and the 6p manifold of rubidium. We use a timecorrelated single-photon counting technique on a sample of 85Rb atoms confined and cooled in a magneto-optic trap. The upper state of the 5P1/2 repumpin
Data students collect from the typical advanced undergraduate laboratory on Saturated Absorption Spectroscopy (SAS) of rubidium can be used to measure the isotope shift and thus leads to an estimate of the isotopic ground state energy shift. This hel