ﻻ يوجد ملخص باللغة العربية
We describe the experimental implementation of a superluminal ({it i.e.} faster than light {it in vacuo}) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments lead one to expect that the radiation emitted from each volume element of such a polarization current will comprise a v{C}erenkov-like envelope with two sheets that meet along a cusp. The emission from the experimental machine is in good agreement with these expectations, the combined effect of the volume elements leading to tightly-defined beams of a well-defined geometry, determined by the source speed and trajectory. In addition, over a restricted range of angles, we detect the presence of cusps in the emitted radiation. These are due to the detection over a short time period (in the laboratory frame) of radiation emitted over a considerably longer period of source time. Consequently, the intensity of the radiation at these angles was observed to decline more slowly with increasing distance from the source than would the emission from a conventional antenna. The angular distribution of the emitted radiation and the properties associated with the cusps are in good {it quantitative} agreement with theoretical models of superluminal sources once the effect of reflections from the earths surface are taken into account.
Based on the relation between a plane phased array and plane waves we show that a spherical current layer or a current sphere proportional to a multipole electric field and situated in a uniform medium generates the same multipole field in all space.
In most of Seyfert-1 active galactic nucei (AGN) the optical linear continuum polarization degree is usually small (less than 1%) and the polarization position angle is nearly parallel to the AGN radio-axis. However, there are many types-1 AGNs with
We show that the more energetic superluminal neutrinos with quadratically dispersed superluminalities delta=beta^2-1, for beta=v/c where v is the neutrino velocity, also lose significant energy to radiation to the u+e^-+e^+ final state in travelling
Advanced diffractive films may afford advantages over passive reflective surfaces for a variety space missions that use solar or laser in-space propulsion. Three cases are compared: Sun-facing diffractive sails, Littrow diffraction configurations, an
We show experimentally that a continuous, linear, dielectric antenna in which a superluminal polarization-current distribution accelerates can be used to transmit a broadband signal that is reproduced in a comprehensible form at a chosen target dista