ﻻ يوجد ملخص باللغة العربية
Advanced diffractive films may afford advantages over passive reflective surfaces for a variety space missions that use solar or laser in-space propulsion. Three cases are compared: Sun-facing diffractive sails, Littrow diffraction configurations, and conventional reflective sails. A simple Earth-to-Mars orbit transfer at a constant attitude with respect to the sun-line finds no penalty for transparent diffractive sails. Advantages of the latter approach include actively controlled metasails and the reuse of photons.
Radiation pressure afforded by natural broadband sunlight upon a transmissive diffractive sail is theoretically and numerically investigated. A grating period of one micrometer is found to convert 83% of the solar black body spectrum into sailcraft m
The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the lights electric field acts upon the (induced) bound charges in the medium, its magnetic fi
Deformations of horizontal liquid interfaces by optical radiation pressure are generally expected to display similar behaviors whatever the direction of propagation of the exciting laser beam is. In the present experiment we find this expectation to
We describe the experimental implementation of a superluminal ({it i.e.} faster than light {it in vacuo}) polarization current distribution that both oscillates and undergoes centripetal acceleration. Theoretical treatments lead one to expect that th
Quantitative measurements of the vibrational eigenmodes in ultra-high-Q silica microspheres are reported. The modes are efficiently excited via radiation-pressure induced dynamical back-action of light confined in the optical whispering-gallery modes