ﻻ يوجد ملخص باللغة العربية
Phase-stabilized 12-fs, 1-nJ pulses from a commercial Ti:sapphire oscillator are directly amplified in a chirped-pulse optical parametric amplifier and recompressed to yield near-transform-limited 17.3-fs pulses. The amplification process is demonstrated to be phase preserving and leads to 85-uJ, carrier-envelope-offset phase-locked pulses at 1 kHz for 0.9 mJ of pump, corresponding to a single-pass gain of 8.5 x 10^4.
We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering noise behaves similarly to the parametric super-fluorescence in the spatial domain,
An optical cavity consisting of optically trapped mirrors makes a resonant bar that can be stiffer than diamond. A limitation of the stiffness arises in the length of the optical bar as a consequence of the finite light speed. High laser power and li
Lasers that generate ultra-intense light pulses are under development for experiments in high-field and high-energy-density physics, as well as for applications such as particle acceleration. Extensions to even higher powers are being considered for
We report optical parametric amplification (OPA) of low-frequency infrared pulses in the intermediate region between terahertz (THz) frequency and mid-infrared (MIR), i.e., from 16.9 to 44.8 THz. The 255-fs laser output of the Yb:KGW regenerative amp
This paper presents the optimization of a dual-chirped optical parametric amplification (DC-OPA) scheme for producing an ultrafast intense infrared (IR) pulse. By employing a total energy of 0.77 J Ti:sapphire pump laser and type-I BBO crystals, an I