ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Contrast Chirped-Pulse Amplification Enabled by In-Band Noise Filtering

117   0   0.0 ( 0 )
 نشر من قبل Jing Wang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lasers that generate ultra-intense light pulses are under development for experiments in high-field and high-energy-density physics, as well as for applications such as particle acceleration. Extensions to even higher powers are being considered for future investigations that can only be imagined today, such as the quantum electrodynamics of plasmas and isolated attosecond-pulse generation with solid targets. For all of these areas, it is vital to produce high-contrast pulses, so that no pre-plasma is created in the target before the arrival of the main pulse. However, noise is unavoidable in high-gain amplification, and is manifested in the form of background light that accompanies pulses generated by chirped-pulse amplification (CPA). Here, we introduce a linear filtering technique based on spatio-spectral coupling, which allows in-band filtering of amplified pulses for the first time. Experiments demonstrate approximately 40 times contrast enhancement in optical parametric chirped-pulse amplification (OPCPA) and provide a foundation for scaling to much higher performance. The simplicity, efficiency, and direct compatibility with existing techniques for short-pulse generation will make spatio-spectral filtering attractive to a wide range of applications in ultrafast optics and time-resolved spectroscopy, and may open new directions in noise reduction.

قيم البحث

اقرأ أيضاً

325 - Jing Wang , Jingui Ma , Peng Yuan 2015
We experimentally study a new kind of parametric noise that is initiated from signal scattering and enhanced through optical parametric amplification. Such scattering noise behaves similarly to the parametric super-fluorescence in the spatial domain, yet is typically much stronger. In the time domain, it inherits the chirp of signal pulses and can be well compressed. We demonstrate that this scattering-initiated parametric noise has little influence on the amplified pulse contrast but can degrade the conversion efficiency substantially.
We propose an efficient method for spatial filtering of light beams by propagating them through 2D (also 3D) longitudinally chirped photonic crystals, i.e. through the photonic structures with fixed transverse lattice period and with the longitudinal lattice period varying along the direction of the beam propagation. We prove the proposed idea by numerically solving the paraxial propagation equation in refraction index-modulated media, and we evaluate the efficiency of the process by plane-wave-expansion analysis. The technique can be applied to filter (to clean) the packages of atomic waves (Bose condensates), as well improve the directionality of acoustic and mechanical waves.
108 - H. Zhang , T. Wang , J. Tian 2021
In this work, we propose and numerically investigate a two-dimensional microlaser based on the concept of bound states in the continuum (BIC). The device consists of a thin gain layer (Rhodamine 6G dye-doped silica) sandwiched between two high-contra st-grating layers. The structure supports various BIC modes upon a proper choice of topological parameters; in particular it supports a high-Q quasi-BIC mode when partially breaking a bound state in the continuum at $Gamma$ point. The optically-pumped gain medium provides sufficient optical gain to compensate the quasi-BIC mode losses, enabling lasing with ultra-low pump threshold (fluence of 17 $mu$J/cm$^2$) and very narrow optical linewidth in the visible range. This innovative device displays distinguished sensing performance for gas detection, and the emission wavelength sensitively shifts to the longer wavelength with the changing of environment refractive index (in order of $5 times 10^{-4}$). The achieved bulk sensitivity is 221 nm/RIU with a high signal to noise ratio, and a record-high figure of merit reaches to 4420 RIU$^{-1}$. This ultracompact and low threshold quasi-BIC laser facilitated by the ultra-narrow resonance can serve as formidable candidate for on-chip gas sensor.
75 - C. P. Hauri 2004
Phase-stabilized 12-fs, 1-nJ pulses from a commercial Ti:sapphire oscillator are directly amplified in a chirped-pulse optical parametric amplifier and recompressed to yield near-transform-limited 17.3-fs pulses. The amplification process is demonstr ated to be phase preserving and leads to 85-uJ, carrier-envelope-offset phase-locked pulses at 1 kHz for 0.9 mJ of pump, corresponding to a single-pass gain of 8.5 x 10^4.
We investigate the impact of pulse interleaving and optical amplification on the spectral purity of microwave signals generated by photodetecting the pulsed output of an Er:fiber-based optical frequency comb. It is shown that the microwave phase nois e floor can be extremely sensitive to delay length errors in the interleaver, and the contribution of the quantum noise from optical amplification to the phase noise can be reduced ~10 dB for short pulse detection. We exploit optical amplification, in conjunction with high power handling modified uni-traveling carrier photodetectors, to generate a phase noise floor on a 10 GHz carrier of -175 dBc/Hz, the lowest ever demonstrated in the photodetection of a mode-locked fiber laser. At all offset frequencies, the photodetected 10 GHz phase noise performance is comparable to or better than the lowest phase noise results yet demonstrated with stabilized Ti:sapphire frequency combs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا