ﻻ يوجد ملخص باللغة العربية
Aging phenomena constitute one of the most complex and serious potential problems which could limit, or severely impair, the use of gaseous detectors in unprecedented harsh radiation environments. Long-term operation in high-intensity experiments of the LHC-era not only demands extraordinary radiation hardness of construction materials and gas mixtures but also very specific and appropriate assembly procedures and quality checks during detector construction and testing. Recent experimental data from hadron beams is discussed. It is shown that the initial stage of radiation tests, usually performed under isolated laboratory conditions, may not offer the full information needed to extrapolate to the long-term performance of real and full-size detectors at high energy physics facilities. Major factors, closely related to the capability of operating at large localized ionization densities, and which could lead to operation instabilities and subsequent aging phenomena in gaseous detectors, are summarized. Finally, an overview of aging experience with state-of-the-art gas detectors in experiments with low- and high-intensity radiation environments is given with a goal of providing a set of rules, along with some caveat, for the construction and operation of gaseous detectors in high luminosity experiments.
The motivation for investigating the use of GaAs as a material for detecting particles in experiments for High Energy Physics (HEP) arose from its perceived resistance to radiation damage. This is a vital requirement for detector materials that are t
Radiation damage effects represent one of the limits for technologies to be used in harsh radiation environments as space, radiotherapy treatment, high-energy phisics colliders. Different technologies have known tolerances to different radiation fiel
In this work we propose the application of a radiation damage model based on the introduction of deep level traps/recombination centers suitable for device level numerical simulation of radiation detectors at very high fluences (e.g. 1{div}2 10^16 1-
Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earths radiation belts. Current
The LHCb Vertex Locator (VELO) is a silicon strip detector designed to reconstruct charged particle trajectories and vertices produced at the LHCb interaction region. During the first two years of data collection, the 84 VELO sensors have been expose