ترغب بنشر مسار تعليمي؟ اضغط هنا

GPM Ground Validation Basic Radar Products and Implications for Observation Strategies

36   0   0.0 ( 0 )
 نشر من قبل Sandra E. Yuter
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recommendations are made for NASA/JAXA Global Precipitation Measurement (GPM) satellite Ground Validation (GV) program. This report details recommended GV site local radar products based on data from surface-based scanning radars including S-band, C-band, and X-band polarimetric and non-polarimetric radars. Three general categories of products are described: text products summarizing information on the statistical characteristics of the radar data and derived parameters, 2D products providing maps of the horizontal variability of near surface radar observed and derived parameters, and 3D products describing volumetric echo structure. Regional composites could include products based on several of the 2D and 3D single radar products. Several types of time-integrated 2D and 3D products are also recommended. A brief discussion of useful ancillary data from other sources and remaining challenges concludes the report.

قيم البحث

اقرأ أيضاً

The radar scattering properties of realistic aggregate snowflakes have been calculated using the Rayleigh-Gans theory. We find that the effect of the snowflake geometry on the scattering may be described in terms of a single universal function, which depends only on the overall shape of the aggregate and not the geometry or size of the pristine ice crystals which compose the flake. This function is well approximated by a simple analytic expression at small sizes; for larger snowflakes we fit a curve to our numerical data. We then demonstrate how this allows a characteristic snowflake radius to be derived from dual-wavelength radar measurements without knowledge of the pristine crystal size or habit, while at the same time showing that this detail is crucial to using such data to estimate ice water content. We also show that the `effective radius, characterising the ratio of particle volume to projected area, cannot be inferred from dual-wavelength radar data for aggregates. Finally, we consider the errors involved in approximating snowflakes by `air-ice spheres, and show that for small enough aggregates the predicted dual wavelength ratio typically agrees to within a few percent, provided some care is taken in choosing the radius of the sphere and the dielectric constant of the air-ice mixture; at larger sizes the radar becomes more sensitive to particle shape, and the errors associated with the sphere model are found to increase accordingly.
The three electromagnetic properties appearing in Maxwells equations are dielectric permittivity, electrical conductivity and magnetic permeability. The study of point diffractors in a homogeneous, isotropic, linear medium suggests the use of logarit hms to describe the variations of electromagnetic properties in the earth. A small anomaly in electrical properties (permittivity and conductivity) responds to an incident electromagnetic field as an electric dipole, whereas a small anomaly in the magnetic property responds as a magnetic dipole. Neither property variation can be neglected without justification. Considering radiation patterns of the different diffracting points, diagnostic interpretation of electric and magnetic variations is theoretically feasible but is not an easy task using Ground Penetrating Radar. However, using an effective electromagnetic impedance and an effective electromagnetic velocity to describe a medium, the radiation patterns of a small anomaly behave completely differently with source-receiver offset. Zero-offset reflection data give a direct image of impedance variations while large-offset reflection data contain information on velocity variations.
299 - James Hansen 2011
Improving observations of ocean heat content show that Earth is absorbing more energy from the sun than it is radiating to space as heat, even during the recent solar minimum. The inferred planetary energy imbalance, 0.59 pm 0.15 W/m2 during the 6-ye ar period 2005-2010, confirms the dominant role of the human-made greenhouse effect in driving global climate change. Observed surface temperature change and ocean heat gain together constrain the net climate forcing and ocean mixing rates. We conclude that most climate models mix heat too efficiently into the deep ocean and as a result underestimate the negative forcing by human-made aerosols. Aerosol climate forcing today is inferred to be 1.6 pm 0.3 W/m2, implying substantial aerosol indirect climate forcing via cloud changes. Continued failure to quantify the specific origins of this large forcing is untenable, as knowledge of changing aerosol effects is needed to understand future climate change. We conclude that recent slowdown of ocean heat uptake was caused by a delayed rebound effect from Mount Pinatubo aerosols and a deep prolonged solar minimum. Observed sea level rise during the Argo float era is readily accounted for by ice melt and ocean thermal expansion, but the ascendency of ice melt leads us to anticipate acceleration of the rate of sea level rise this decade.
Multistatic ground-penetrating radar (GPR) signals can be imaged tomographically to produce three-dimensional distributions of image intensities. In the absence of objects of interest, these intensities can be considered to be estimates of clutter. T hese clutter intensities spatially vary over several orders of magnitude, and vary across different arrays, which makes direct comparison of these raw intensities difficult. However, by gathering statistics on these intensities and their spatial variation, a variety of metrics can be determined. In this study, the clutter distribution is found to fit better to a two-parameter Weibull distribution than Gaussian or lognormal distributions. Based upon the spatial variation of the two Weibull parameters, scale and shape, more information may be gleaned from these data. How well the GPR array is illuminating various parts of the ground, in depth and cross-track, may be determined from the spatial variation of the Weibull scale parameter, which may in turn be used to estimate an effective attenuation coefficient in the soil. The transition in depth from clutter-limited to noise-limited conditions (which is one possible definition of GPR penetration depth) can be estimated from the spatial variation of the Weibull shape parameter. Finally, the underlying clutter distributions also provide an opportunity to standardize image intensities to determine when a statistically significant deviation from background (clutter) has occurred, which is convenient for buried threat detection algorithm development which needs to be robust across multiple different arrays.
A nowcast is a type of weather forecast which makes predictions in the very short term, typically less than two hours - a period in which traditional numerical weather prediction can be limited. This type of weather prediction has important applicati ons for commercial aviation; public and outdoor events; and the construction industry, power utilities, and ground transportation services that conduct much of their work outdoors. Importantly, one of the key needs for nowcasting systems is in the provision of accurate warnings of adverse weather events, such as heavy rain and flooding, for the protection of life and property in such situations. Typical nowcasting approaches are based on simple extrapolation models applied to observations, primarily rainfall radar. In this paper we review existing techniques to radar-based nowcasting from environmental sciences, as well as the statistical approaches that are applicable from the field of machine learning. Nowcasting continues to be an important component of operational systems and we believe new advances are possible with new partnerships between the environmental science and machine learning communities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا