ﻻ يوجد ملخص باللغة العربية
We consider the induction of magnetic field in flows of electrically conducting fluid at low magnetic Prandtl number and large kinetic Reynolds number. Using the separation between the magnetic and kinetic diffusive lengthscales, we propose a new numerical approach. The coupled magnetic and fluid equations are solved using a mixed scheme, where the magnetic field fluctuations are fully resolved and the velocity fluctuations at small scale are modelled using a Large Eddy Simulation (LES) scheme. We study the response of a forced Taylor-Green flow to an externally applied field: tology of the mean induction and time fluctuations at fixed locations. The results are in remarkable agreement with existing experimental data; a global $1/f$ behavior at long times is also evidenced.
This paper is a detailed report on a programme of simulations used to settle a long-standing issue in the dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm>>1 and small magnetic Prandtl
In this paper we examine the role of weak magnetic fields in breaking Kelvins circulation theorem and in vortex breakup in two-dimensional magnetohydrodynamics for the physically important case of a low magnetic Prandtl number (low $Pm$) fluid. We co
The magnetorotational instability (MRI) is considered to be one of the most powerful sources of turbulence in hydrodynamically stable quasi-Keplerian flows, such as those governing accretion disk flows. Although the linear stability of these flows wi
Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with
We compute numerically the threshold for dynamo action in Taylor-Green swirling flows. Kinematic calculations, for which the flow field is fixed to its time averaged profile, are compared to dynamical runs for which both the Navier-Stokes and the ind