ﻻ يوجد ملخص باللغة العربية
Purpose of this work is the development of an automatic system which could be useful for radiologists in the investigation of breast cancer. A breast neoplasia is often marked by the presence of microcalcifications and massive lesions in the mammogram: hence the need for tools able to recognize such lesions at an early stage. GPCALMA (Grid Platform Computer Assisted Library for MAmmography), a collaboration among italian physicists and radiologists, has built a large distributed database of digitized mammographic images (at this moment about 5500 images corresponding to 1650 patients). This collaboration has developed a CAD (Computer Aided Detection) system which, installed in an integrated station, can also be used for digitization, as archive and to perform statistical analysis. With a GRID configuration it would be possible for the clinicians tele- and co-working in new and innovative groupings (virtual organisations) and, using the whole database, by the GPCALMA tools several analysis can be performed. Furthermore the GPCALMA system allows to be abreast of the CAD technical progressing into several hospital locations always with remote working by GRID connection. We report in this work the results obtained by the GPCALMA CAD software implemented with a GRID connection.
The next generation of High Energy Physics experiments requires a GRID approach to a distributed computing system and the associated data management: the key concept is the Virtual Organisation (VO), a group of geographycally distributed users with a
The GPCALMA (Grid Platform for Computer Assisted Library for MAmmography) collaboration involves several departments of physics, INFN sections, and italian hospitals. The aim of this collaboration is developing a tool that can help radiologists in ea
The computer-aided diagnosis system we developed for the mass characterization is mainly based on a segmentation algorithm and on the neural classification of several features computed on the segmented mass. Mass segmentation plays a key role in most
An image restoration approach based on a Bayesian maximum entropy method (MEM) has been applied to a radiological image deconvolution problem, that of reduction of geometric blurring in magnification mammography. The aim of the work is to demonstrate
To obtain the initial pressure from the collected data on a planar sensor arrangement in photoacoustic tomography, there exists an exact analytic frequency domain reconstruction formula. An efficient realization of this formula needs to cope with the