ﻻ يوجد ملخص باللغة العربية
To obtain the initial pressure from the collected data on a planar sensor arrangement in photoacoustic tomography, there exists an exact analytic frequency domain reconstruction formula. An efficient realization of this formula needs to cope with the evaluation of the datas Fourier transform on a non-equispaced mesh. In this paper, we use the non-uniform fast Fourier transform to handle this issue and show its feasibility in 3D experiments with real and synthetic data. This is done in comparison to the standard approach that uses linear, polynomial or nearest neighbor interpolation. Moreover, we investigate the effect and the utility of flexible sensor location to make optimal use of a limited number of sensor points. The computational realization is accomplished by the use of a multi-dimensional non-uniform fast Fourier algorithm, where non-uniform data sampling is performed both in frequency and spatial domain. Examples with synthetic and real data show that both approaches improve image quality.
We consider the problem of finding the minimizer of a convex function $F: mathbb R^d rightarrow mathbb R$ of the form $F(w) := sum_{i=1}^n f_i(w) + R(w)$ where a low-rank factorization of $ abla^2 f_i(w)$ is readily available. We consider the regime
We consider the problem of asymptotic convergence to invariant sets in interconnected nonlinear dynamic systems. Standard approaches often require that the invariant sets be uniformly attracting. e.g. stable in the Lyapunov sense. This, however, is n
In this paper, we develop a non-uniform sampling approach for fast and efficient path planning of autonomous vehicles. The approach uses a novel non-uniform partitioning scheme that divides the area into obstacle-free convex cells. The partitioning r
We investigate 1) the rate at which refined properties of the empirical risk---in particular, gradients---converge to their population counterparts in standard non-convex learning tasks, and 2) the consequences of this convergence for optimization. O
We analyze numerically the performance of the near-optimal quadratic dynamical decoupling (QDD) single-qubit decoherence errors suppression method [J. West et al., Phys. Rev. Lett. 104, 130501 (2010)]. The QDD sequence is formed by nesting two optima