ﻻ يوجد ملخص باللغة العربية
The inverse square force law admits a conserved vector that lies in the plane of motion. This vector has been associated with the names of Laplace, Runge, and Lenz, among others. Many workers have explored aspects of the symmetry and degeneracy associated with this vector and with analogous dynamical symmetris. We define a conserved dynamical variable $alpha$ that characterizes the orientation of the orbit in two-dimensional configuration space for the Kepler problem and an analogous variable $beta$ for the isotropic harmonics oscillator. This orbit orientation variable is canonically conjugate to the angular momentum component normal to the plane of motion. We explore the canoncial one-parameter group of transformations generated by $alpha (beta).$ Because we have an obvious pair of conserved canonically conjugate variables, it is desirable to us them as a coordinate-momentum pair. In terms of these phase space coordinates, the form of the Hamiltonian is nearly trivial because neither member of the pair can occur explicitly in the Hamiltonian. From these considerations we gain a simple picture of the dynamics in phase space. The procedure we use is in the spirit of the Hamilton-Jacobi method.
We briefly show how classical mechanics can be rederived and better understood as a consequence of three assumptions: infinitesimal reducibility, deterministic and reversible evolution, and kinematic equivalence.
We analyze the relation of the notion of a pluri-Lagrangian system, which recently emerged in the theory of integrable systems, to the classical notion of variational symmetry, due to E. Noether. We treat classical mechanical systems and show that, f
The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum $L$. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the har
The procedure commonly used in textbooks for determining the eigenvalues and eigenstates for a particle in an attractive Coulomb potential is not symmetric in the way the boundary conditions at $r=0$ and $r rightarrow infty$ are considered. We highli
The fact that the capacitance coefficients for a set of conductors are geometrical factors is derived in most electricity and magnetism textbooks. We present an alternative derivation based on Laplaces equation that is accessible for an intermediate