ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of multiscale magnetic field by parity-invariant time-periodic flows

357   0   0.0 ( 0 )
 نشر من قبل Vladislav A. Zheligovsky
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study generation of magnetic fields involving large spatial scales by time- and space-periodic small-scale parity-invariant flows. The anisotropic magnetic eddy diffusivity tensor is calculated by the standard procedure involving expansion of magnetic modes and their growth rates in power series in the scale ratio. Our simulations, conducted for flows with random harmonic composition and exponentially decaying energy spectra, demonstrate that enlargement of the spatial scale of magnetic field is beneficial for generation by time-periodic flows. However, they turn out, in general, to be less efficient dynamos, than steady flows.



قيم البحث

اقرأ أيضاً

Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network link s in climate networks typically imply information, mass or energy exchange. However, the specific connection between oceanic or atmospheric flows and the climate networks structure is still unclear. We propose a theoretical approach for verifying relations between the correlation matrix and the climate network measures, generalizing previous studies and overcoming the restriction to stationary flows. Our methods are developed for correlations of a scalar quantity (temperature, for example) which satisfies an advection-diffusion dynamics in the presence of forcing and dissipation. Our approach reveals that correlation networks are not sensitive to steady sources and sinks and the profound impact of the signal decay rate on the network topology. We illustrate our results with calculations of degree and clustering for a meandering flow resembling a geophysical ocean jet.
63 - Jian-Zhou Zhu 2021
The problem of a flow with its velocity gradient being of textit{real Schur form} uniformly in a cyclic box is formulated for numerical simulation, and a semi-analytic algorithm is developed from the precise structures. Computations starting from two -component-two-dimensional-coupled-with-one-component-three-dimensional initial velocity fields of the Taylor-Green and Arnold-Beltrami-Childress fashions are carried out, and some discussions related to turbulence are offered for the multi-scale eddies which, though, present precise order and symmetry. Plenty of color pictures of patterns of these completely new flows are presented for general and specific conceptions.
A series of benchmarks based on the physical situation of phase inversion between two immiscible liquids is presented. These benchmarks aim at progressing toward the direct numerical simulation of two-phase flows. Several CFD codes developed in Frenc h laboratories and using either Volume-of-Fluid or Level-Set interface tracking methods are used to provide physical solutions of the benchmarks, convergence studies and code comparisons. Two typical configurations are retained, with integral scale Reynolds numbers of 13.700 and 433.000, respectively. The physics of the problem are probed through macroscopic quantities such as potential and kinetic energies, or enstrophy. In addition, scaling laws for the temporal decay of the kinetic energy are derived to check the physical relevance of the simulations. Finally the droplet size distribution is probed. Additional test problems are also reported to estimate the influence of viscous effects in the vicinity of the interface.
Helicity, as one of only two inviscid invariants in three-dimensional turbulence, plays an important role in the generation and evolution of turbulence. From the traditional viewpoint, there exists only one channel of helicity cascade similar to that of kinetic energy cascade. Through theoretical analysis, we find that there are two channels in helicity cascade process. The first channel mainly originates from vortex twisting process, and the second channel mainly originates from vortex stretching process. By analysing the data of direct numerical simulations of typical turbulent flows, we find that these two channels behave differently. The ensemble averages of helicity flux in different channels are equal in homogeneous and isotropic turbulence, while they are different in other type of turbulent flows. The second channel is more intermittent and acts more like a scalar, especially on small scales. Besides, we find a novel mechanism of hindered even inverse energy cascade, which could be attributed to the second-channel helicity flux with large amplitude.
Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g. algal blooms) and industrial (e.g. biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspens ions of swimming Escherichia coli in experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large scale transport and reduce overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا