ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbit Feedback System for the Storage Ring of SRRC

90   0   0.0 ( 0 )
 نشر من قبل Changhor Kuo
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Orbit feedback system plays crucial roles for the operation of the 3rd generation light source. There are various issues in orbit feedback system should be addressed to achieve ultimate performance. The orbit feedback system in SRRC is upgraded recently to satisfy the requirement of demanding users. Based upon operational experiences of the last few years, new system was designed with more robustness and flexibility. Performance analysis tools are also developed to monitor system performance. Algorithms for feedback control, data acquisition and analysis are described and measurement is also presented.

قيم البحث

اقرأ أيضاً

Data acquisition systems for the accelerator complex at SRRC composed various hardware and software components. Beam signals are processed by related processing electronics, and connect to control system by various type of interfaces in data acquisit ion front-end. These front-end include VME crates, personal computers and instruments bus adapters. Fast Ethernet connected all elements together with control consoles. User interface is running on control console. Real-time data capture; display and alaysis are supported on control console. Analysis tools based on Matlab scripts are adopted. Hardware and software implementation of the system will be presented. User interface supports are also described.
We report on an injection feedback scheme for the ThomX storage ring project. ThomX is a 50-MeV-electron accelerator prototype which will use Compton backscattering in a storage ring to generate a high flux of hard X-rays. Given the slow beam damping (in the ring), the injection must be performed with high accuracy to avoid large betatron oscillations. A homemade analytic code is used to compute the corrections that need to be applied before the beam injection to achieve a beam position accuracy of a few hundred micrometers in the first beam position monitors (BPMs). In order to do so the code needs the information provided by the rings diagnostic devices. The iterative feedback system has been tested using MadX simulations. Our simulations show that a performance that matches the BPMs accuracy can be achieved in less than 50 iterations in all cases. Details of this feedback algorithm, its efficiency and the simulations are discussed.
101 - D. Nagae , Y. Abe , S. Okada 2020
An electrostatic time-of-flight detector named E-MCP has been developed for quick diagnostics of circulating beam and timing measurement in mass spectrometry at the Rare-RI Ring in RIKEN. The E-MCP detector consists of a conversion foil, potential gr ids, and a microchannel plate. Secondary electrons are released from the surface of the foil when a heavy ion hits it. The electrons are accelerated and deflected by 90$^circ$ toward the microchannel plate by electrostatic potentials. A thin carbon foil and a thin aluminum-coated mylar foil were used as conversion foils. We obtained time resolutions of 69(1) ps and 43(1) ps (standard deviation) for a $^{84}$Kr beam at an energy of 170 MeV/u when using the carbon and the aluminum-coated mylar foils, respectively. A detection efficiency of approximately 90% was obtained for both foils. The E-MCP detector equipped with the carbon foil was installed inside the Rare-RI Ring to confirm particle circulation within a demonstration experiment on mass measurements of nuclei around $^{78}$Ge produced by in-flight fission of uranium beam at the RI Beam Factory in RIKEN. Periodic time signals from circulating ions were clearly observed. Revolution times for $^{78}$Ge, $^{77}$Ga, and $^{76}$Zn were obtained. The results confirmed successful circulation of the short-lived nuclei inside the Rare-RI Ring.
191 - R. J. Chen , X. L. Yan , W. W. Ge 2018
The Isochronous Mass Spectrometry (IMS) is a powerful technique developed in heavy-ion storage rings for measuring masses of very short-lived exotic nuclei. The IMS is based on the isochronous setting of the ring. One of the main parameters of this s etting is the transition energy $gamma_{t}$. %The transition energy $gamma_{t}$ plays an important role in the isochronous mass spectrometry (IMS). It has been a challenge to determine the $gamma_{t}$ and especially to monitor the variation of $gamma_{t}$ during experiments. In this paper we introduce a method to measure the $gamma_{t}$ online during IMS experiments by using the acquired experimental data. Furthermore, since the storage ring has (in our context) a relatively large momentum acceptance, the variation of the $gamma_{t}$ across the ring acceptance is a source of systematic uncertainty of measured masses. With the installation of two time-of-flight (TOF) detectors, the velocity of each stored ion and its revolution time are simultaneously available for the analysis. These quantities enabled us to determine the $gamma_{t}$ as a function of orbital length in the ring. The presented method is especially important for future IMS experiments planned at the new-generation storage ring facilities FAIR in Germany and HIAF in China.
256 - Ping Lu , Leilei Tang , Baogen Sun 2021
The 4 electrode signals of the beam position detector(BPM) of the STORAGE ring of HEFEI Light Source are directly connected to the domestic oscilloscope with 12bit resolution, 10Gsps sampling rate and 2GHz bandwidth. The acquisition program is run on the cloud host under the Zstack architecture, triggering to read a group of waveforms of 500us each time. The X (horizontal position), Y (vertical position) and Z (longitudinal phase) information of the centroid of 45 bunches 2266 cycles were extracted. The resolution of X and Y of each bunches was about 5um, and the resolution of Z was about 0.5ps. The update period of online operation was about 7 seconds. The three-dimensional tune of each bunch can be obtained by analyzing the three-dimensional position information of each bunch in normal operation. The spectrum peak of the transverse quadrupole oscillation can be observed by analyzing the button and strip electrode signals when beam is incentived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا