ترغب بنشر مسار تعليمي؟ اضغط هنا

Injection Feedback for a Storage Ring

102   0   0.0 ( 0 )
 نشر من قبل Alexandre Moutardier
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an injection feedback scheme for the ThomX storage ring project. ThomX is a 50-MeV-electron accelerator prototype which will use Compton backscattering in a storage ring to generate a high flux of hard X-rays. Given the slow beam damping (in the ring), the injection must be performed with high accuracy to avoid large betatron oscillations. A homemade analytic code is used to compute the corrections that need to be applied before the beam injection to achieve a beam position accuracy of a few hundred micrometers in the first beam position monitors (BPMs). In order to do so the code needs the information provided by the rings diagnostic devices. The iterative feedback system has been tested using MadX simulations. Our simulations show that a performance that matches the BPMs accuracy can be achieved in less than 50 iterations in all cases. Details of this feedback algorithm, its efficiency and the simulations are discussed.



قيم البحث

اقرأ أيضاً

We explore the possibility of operating a SASE FEL with a Storage Ring. We use a semi-analytical model to obtain the evolution inside the undulator by taking into account the interplay on the laser dynamics due to the induced energy spread and to the radiation damping. We obtain the Renieris limit for the stationary output power and discuss the possibility of including in our model the effect of the beam instabilities.
This project exploits charged particles confined as a storage ring beam (proton, deuteron, possibly $^3$He) to search for an intrinsic electric dipole moment (EDM, $vec d$) aligned along the particle spin axis. Statistical sensitivities can approach $10^{-29}$~e$cdot$cm. The challenge will be to reduce systematic errors to similar levels. The ring will be adjusted to preserve the spin polarization, initially parallel to the particle velocity, for times in excess of 15 minutes. Large radial electric fields, acting through the EDM, will rotate the polarization ($vec d timesvec E$). The slow rise in the vertical polarization component, detected through scattering from a target, signals the EDM. The project strategy is outlined. It foresees a step-wise plan, starting with ongoing COSY activities that demonstrate technical feasibility. Achievements to date include reduced polarization measurement errors, long horizontal-plane polarization lifetimes, and control of the polarization direction through feedback from the scattering measurements. The project continues with a proof-of-capability measurement (precursor experiment; first direct deuteron EDM measurement), an intermediate prototype ring (proof-of-principle; demonstrator for key technologies), and finally the high precision electric-field storage ring.
This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrot ron COSY in Julich using a vector polarized, bunched $0.97,textrm{GeV/c}$ deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.
Using calculations and mathematical modeling, we demonstrate the feasibility of constructing a synchrotron storage ring for neutral polar molecules. The lattice is a racetrack type 3.6 m in circumference consisting of two of 180-degree arcs, six bunc hers, and two long straight sections. Each straight section contains two triplet focusing lenses and space for beam injection and experiments. The design also includes a matched injector and a linear decelerator. Up to 60 bunches can be loaded and simultaneously stored in the ring. The molecules are injected at 90 m/s but the velocity of the circulating beam can be decelerated to 60 m/s after injection. The modeling uses deuterated ammonia molecules in a weak-field seeking state. Beam that survives 400 turns (15 s), has horizontal and vertical acceptances of 35 mm-mr and 70 mm-mr respectively, and an energy acceptance of plus or minus 2%.
Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storag e-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This paper reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler and initial tracking simulations are presented and some potential issues such as coherent synchrotron radiation and beam break up are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا