ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact vacuum phototriodes for operation in strong magnetic field

72   0   0.0 ( 0 )
 نشر من قبل Mikhail Achasov
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of tests of 1 vacuum phototriodes in a magnetic field up to 4.5 T are presented. It was found that output amplitude decreases by about 6 % per tesla in the magnetic field range from 2.0 to 4.0 T. For devices with an anode mesh pitch of 16$mu$m, the output amplitude at 4.0 T is 30 % lower than that at zero field.



قيم البحث

اقرأ أيضاً

In this paper we describe the technology of building a vacuum-tight high voltage feedthrough which is able to operate at voltages up to 30 kV. The feedthrough has a coaxial structure with a grounded sheath which makes it capable to lead high voltage potentials into cryogenic liquids, without risk of surface discharges in the gas phase above the liquid level. The feedthrough is designed to be used in ionization detectors, based on liquefied noble gases, such as Argon or Xenon.
We demonstrate a superconducting (SC) microwave (mw) cavity that can accelerate the dark matter search by maintaining superconductivity in a high DC magnetic field. We used high-temperature superconductor (HTSC) yttrium barium copper oxide (YBCO) wit h a phase transition temperature of 90K to prevent SC failure by the magnetic field. Since the direct deposition of HTSC film on the metallic mw cavity is very difficult, we used the commercial HTSC tapes which are flexible metallic tapes coated with HTSC thin films. We fabricated resonating cavity ($f_{TM010}$ ~ 6.89 GHz) with a third of the inner wall covered by YBCO tapes and measured the quality factor (Q factor) at 4K temperature, varying the DC magnetic field from 0 to 8 tesla. There was no significant quality (Q) factor drop and the superconductivity was well maintained even in 8 tesla magnetic field. This implies the possibility of good performance of HTSC mw resonant cavity under a strong magnetic field for axion detection.
Although experimental efforts have been active for about 30 years now, a direct laboratory observation of vacuum magnetic birefringence, an effect due to vacuum fluctuations, still needs confirmation. Indeed, the predicted birefringence of vacuum is $Delta n = 4.0times 10^{-24}$ @ 1~T. One of the key ingredients when designing a polarimeter capable of detecting such a small birefringence is a long optical path length within the magnetic field and a time dependent effect. To lengthen the optical path within the magnetic field a Fabry-Perot optical cavity is generally used with a finesse ranging from ${cal F} approx 10^4$ to ${cal F} approx7times 10^5$. Interestingly, there is a difficulty in reaching the predicted shot noise limit of such polarimeters. We have measured the ellipticity and rotation noises along with a Cotton-Mouton and a Faraday effect as a function of the finesse of the cavity of the PVLAS polarimeter. The observations are consistent with the idea that the cavity mirrors generate a birefringence-dominated noise whose ellipticity is amplified by the cavity itself. The optical path difference sensitivity at $10;$Hz is $S_{Delta{cal D}}=6times 10^{-19};$m$/sqrt{rm Hz}$, a value which we believe is consistent with an intrinsic thermal noise in the mirror coatings.
Performance of triple GEM prototypes in strong magnetic field has been evaluated bymeans of a muon beam at the H4 line of the SPS test area at CERN. Data have been reconstructedand analyzed offline with two reconstruction methods: the charge centroid and the micro-Time-Projection-Chamber exploiting the charge and the time measurement respectively. A combinationof the two reconstruction methods is capable to guarantee a spatial resolution better than 150{mu}min magnetic field up to a 1 T.
102 - O. Adriani , E. Berti , L. Bonechi 2021
In the RHIC forward (RHICf) experiment, an operation with pp collisions was performed at $sqrt{s},=,$510 GeV from 24-27 June 2017. The performances, energy and position resolutions, trigger efficiency, stability, and background during the operation, have been studied using data and simulations, which revealed that the requirements for production cross-section and transverse single-spin asymmetry measurements of very forward photons, $pi^0$s, and neutrons were satisfied. In this paper, we describe the details of these studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا