ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of RHICf detector during operation in 2017

103   0   0.0 ( 0 )
 نشر من قبل Hiroaki Menjo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the RHIC forward (RHICf) experiment, an operation with pp collisions was performed at $sqrt{s},=,$510 GeV from 24-27 June 2017. The performances, energy and position resolutions, trigger efficiency, stability, and background during the operation, have been studied using data and simulations, which revealed that the requirements for production cross-section and transverse single-spin asymmetry measurements of very forward photons, $pi^0$s, and neutrons were satisfied. In this paper, we describe the details of these studies.



قيم البحث

اقرأ أيضاً

The Microhexcavity Panel ( muHex) is a novel gaseous micropattern particle detector comprised of a dense array of close-packed hexagonal pixels, each operating as an independent detection unit for ionizing radiation. It is a second generation detecto r derived from plasma panel detectors and microcavity detectors. The muHex is under development to be deployed as a scalable, fast timing (ns) and hermetically sealed gaseous tracking detector with high rate ( > 100 KHz/cm^2 ) capability. The devices reported here were fabricated as 16 x 16 pixel arrays of 2 mm edge-to-edge, 1 mm deep hexagonal cells embedded in a thin, 1.4 mm glass-ceramic wafer. Cell walls are metalized cathodes, connected to high voltage bus lines through conductive vias. Anodes are small, 457 micron diameter metal discs screen printed on the upper substrate. The detectors are filled with an operating gas to near 1 atm and then closed with a shut-off valve. They have been operated in both avalanche mode and gas discharge devices, producing mV to volt level signals with about 1 to 3 ns rise times. Operation in discharge mode is enabled by high impedance quench resistors on the high voltage bus at each pixel site. Results indicate that each individual pixel behaves as an isolated detection unit with high single pixel intrinsic efficiency to both betas from radioactive sources and to cosmic ray muons. Continuous avalanche mode operation over several days at hit rates over 300 KHz/cm^2 with no gas flow have been observed. Measurements of pixel isolation, timing response, efficiency, hit rate and rate stability are reported.
A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less config uration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.
A gaseous pixel readout module with four GridPix chips, called the quad, has been developed as a building block for a large time projection chamber readout plane. The quad module has dimensions 39.6 mm $times$ 28.38 mm and an active surface coverage of 68.9%. The GridPix chip consists of a Timepix3 chip with integrated amplification grid and have a high efficiency to detect single ionisation electrons, which enable to make a precise track position measurement. A quad module was installed in a small time projection chamber and measurements of 2.5 GeV electrons were performed at the ELSA accelerator in Bonn, where a silicon telescope was used to provide a reference track. The error on the track position measurement, both in the pixel plane and drift direction, is dominated by diffusion. The quad was designed to have minimum electrical field inhomogeneities and distortions, achieving systematics of better than 13 $mu$m in the pixel plane. The resolution of the setup is 41 $mu$m, where the total systematic error of the quad detector is 24 $mu$m.
We studied the effect of water vapor on the performance of glass Resistive Plate Chambers (RPCs) in the avalanche mode operation. Controlled and calibrated amount of water vapor was added to the RPC gas mixture that has C$_2$H$_2$F$_4$ as the major c omponent. The deterioration in the performance of RPC was observed while operating with wet gas and recovered after switching to standard gas.
67 - Y. Abreu , Y. Amhis , G. Ban 2018
The SoLid experiment aims to measure neutrino oscillation at a baseline of 6.4 m from the BR2 nuclear reactor in Belgium. Anti-neutrinos interact via inverse beta decay (IBD), resulting in a positron and neutron signal that are correlated in time and space. The detector operates in a surface building, with modest shielding, and relies on extremely efficient online rejection of backgrounds in order to identify these interactions. A novel detector design has been developed using 12800 5 cm cubes for high segmentation. Each cube is formed of a sandwich of two scintillators, PVT and 6LiF:ZnS(Ag), allowing the detection and identification of positrons and neutrons respectively. The active volume of the detector is an array of cubes measuring 80x80x250 cm (corresponding to a fiducial mass of 1.6 T), which is read out in layers using two dimensional arrays of wavelength shifting fibres and silicon photomultipliers, for a total of 3200 readout channels. Signals are recorded with 14 bit resolution, and at 40 MHz sampling frequency, for a total raw data rate of over 2 Tbit/s. In this paper, we describe a novel readout and trigger system built for the experiment, that satisfies requirements on: compactness, low power, high performance, and very low cost per channel. The system uses a combination of high price-performance FPGAs with a gigabit Ethernet based readout system, and its total power consumption is under 1 kW. The use of zero suppression techniques, combined with pulse shape discrimination trigger algorithms to detect neutrons, results in an online data reduction factor of around 10000. The neutron trigger is combined with a large per-channel history time buffer, allowing for unbiased positron detection. The system was commissioned in late 2017, with successful physics data taking established in early 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا