ﻻ يوجد ملخص باللغة العربية
A distorted-wave version of the renormalisation group is applied to scattering by an inverse-square potential and to three-body systems. In attractive three-body systems, the short-distance wave function satisfies a Schroedinger equation with an attractive inverse-square potential, as shown by Efimov. The resulting oscillatory behaviour controls the renormalisation of the three-body interactions, with the renormalisation-group flow tending to a limit cycle as the cut-off is lowered. The approach used here leads to single-valued potentials with discontinuities as the bound states are cut off. The perturbations around the cycle start with a marginal term whose effect is simply to change the phase of the short-distance oscillations, or the self-adjoint extension of the singular Hamiltonian. The full power counting in terms of the energy and two-body scattering length is constructed for short-range three-body forces.
We propose a three-potential formalism for the three-body Coulomb scattering problem. The corresponding integral equations are mathematically well-behaved and can succesfully be solved by the Coulomb-Sturmian separable expansion method. The results s
A three-body scattering process in the presence of Coulomb interaction can be decomposed formally into a two-body single channel, a two-body multichannel and a genuine three-body scattering. The corresponding integral equations are coupled Lippmann-S
The three-body energy-dependent effective interaction given by the Bloch-Horowitz (BH) equation is evaluated for various shell-model oscillator spaces. The results are applied to the test case of the three-body problem (triton and He3), where it is s
For solving the $2to 2,3$ three-body Coulomb scattering problem the Faddeev-Merkuriev integral equations in discrete Hilbert-space basis representation are considered. It is shown that as far as scattering amplitudes are considered the error caused b
We consider quantum inverse scattering with singular potentials and calculate the Sine-Gordon model effective potential in the laboratory and centre-of-mass frames. The effective potentials are frame dependent but closely resemble the zero-momentum p