ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold collisions between atoms in optical lattices

95   0   0.0 ( 0 )
 نشر من قبل J. Piilo
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have simulated binary collisions between atoms in optical lattices during Sisyphus cooling. Our Monte Carlo Wave Function simulations show that the collisions selectively accelerate mainly the hotter atoms in the thermal ensemble, and thus affect the steady state which one would normally expect to reach in Sisyphus cooling without collisions.

قيم البحث

اقرأ أيضاً

We demonstrate a double-trap system well suited to study cold collisions between trapped ions and trapped atoms. Using Yb$^+$ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several is otopes for collision energies down to 400 neV (5 mK). The measured rate coefficient of $6 times 10^{-10}$ cm$^{3}$s$^{-1}$, constant over four orders of magnitude in collision energy, is in good agreement with that derived from a semiclassical Langevin model for an atomic polarizability of 143 a.u.
238 - J. Joger , H. Furst , N. Ewald 2017
We report on the observation of cold collisions between $^6$Li atoms and Yb$^+$ ions. This combination of species has recently been proposed as the most suitable for reaching the quantum limit in hybrid atom-ion systems, due to its large mass ratio. For atoms and ions prepared in the $^2S_{1/2}$ ground state, the charge transfer and association rate is found to be at least~10$^{3}$ times smaller than the Langevin collision rate. These results confirm the excellent prospects of $^6$Li--Yb$^+$ for sympathetic cooling and quantum information applications. For ions prepared in the excited electronic states $^2P_{1/2}$, $^2D_{3/2}$ and $^2F_{7/2}$, we find that the reaction rate is dominated by charge transfer and does not depend on the ionic isotope nor the collision energy in the range $sim$~1--120~mK. The low charge transfer rate for ground state collisions is corroborated by theory, but the $4f$ shell in the Yb$^+$ ion prevents an accurate prediction for the charge transfer rate of the $^2P_{1/2}$, $^2D_{3/2}$ and $^2F_{7/2}$ states. Using textit{ab initio} methods of quantum chemistry we calculate the atom-ion interaction potentials up to energies of 30$times 10^3$~cm$^{-1}$, and use these to give qualitative explanations of the observed rates.
141 - N. J. Fitch , L. P. Parazzoli , 2020
Measurements of interactions between cold molecules and ultracold atoms can allow for a detailed understanding of fundamental collision processes. These measurements can be done using various experimental geometries including where both species are i n a beam, where one species is trapped, or when both species are trapped. Simultaneous trapping offers significantly longer interaction times and an associated increased sensitivity to rare collision events. However, there are significant practical challenges associated with combining atom and molecule systems, which often have competing experimental requirements. Here, we describe in detail an experimental system that allows for studies of cold collisions between ultracold atoms and cold molecules in a dual trap, where the atoms and molecules are trapped using static magnetic and electric fields, respectively. As a demonstration of the systems capabilities, we study cold collisions between ammonia ($^{14}$ND$_{3}$ and $^{15}$ND$_{3}$) molecules and rubidium ($^{87}$Rb and $^{85}$Rb) atoms.
We calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 50 atomic linewidths to the red of the ^1S_0-^1P_1 cooling transition. We evaluate loss rate coefficients due to both radiative and nonrad iative state-changing mechanisms for temperatures at and below the Doppler cooling temperature. We solve the Schrodinger equation with a complex potential to represent spontaneous decay, but also give analytic models for various limits. Vibrational structure due to molecular photoassociation is present in the trap loss spectrum. Relatively broad structure due to absorption to the Mg_2 ^1Sigma_u state occurs for detunings larger than about 10 atomic linewidths. Much sharper structure, especially evident at low temperature, occurs even at smaller detunings due to of Mg_2 ^1Pi_g absorption, which is weakly allowed due to relativistic retardation corrections to the forbidden dipole transition strength. We also perform model studies for the other alkaline earth species Ca, Sr, and Ba and for Yb, and find similar qualitative behavior as for Mg.
We develop a formalism for photoionization (PI) and potential energy curves (PECs) of Rydberg atoms in ponderomotive optical lattices and apply it to examples covering several regimes of the optical-lattice depth. The effect of lattice-induced PI on Rydberg-atom lifetime ranges from noticeable to highly dominant when compared with natural decay. The PI behavior is governed by the generally rapid decrease of the PI cross sections as a function of angular-momentum ($ell$), and by lattice-induced $ell$-mixing across the optical-lattice PECs. In GHz-deep lattices, $ell$-mixing leads to a rich PEC structure, and the significant low-$ell$ PI cross sections are distributed over many lattice-mixed Rydberg states. In lattices less than several tens-of-MHz deep, atoms on low-$ell$ PECs are essentially $ell$-mixing-free and maintain large PI cross sections, while atoms on high-$ell$ PECs trend towards being PI-free. Characterization of PI in GHz-deep Rydberg-atom lattices may be beneficial for optical control and quantum-state manipulation of Rydberg atoms, while data on PI in shallower lattices are potentially useful in high-precision spectroscopy and quantum-computing applications of lattice-confined Rydberg atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا