ﻻ يوجد ملخص باللغة العربية
The CLIC (Compact Linear Collider) RF power source is based on a new scheme of electron pulse compression and bunch frequency multiplication using injection by transverse RF deflectors into an isochronous ring. In this paper, we describe the modifications needed in the present LEP Pre-Injector (LPI) complex at CERN in order to perform a low-charge test of the scheme. The design of the injector (including the new thermionic gun), of the modified linac, of the matched injection line, and of the isochronous ring lattice, are presented. The results of preliminary isochronicity measurements made on the present installation are also discussed.
High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron laser
A novel concept of high-power transmitters utilizing the Continuous Wave (CW) magnetrons, frequency-locked by phase-modulated signals has been proposed to compensate energy losses caused by Synchrotron Radiation (SR) in the electron ring of the MEIC
Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of
We have commissioned the digital Low Level RF (LLRF) system for storage ring RF at Advanced Light Source at Lawrence Berkeley National Lab (LBNL). The system is composed of 42 synchronous sampling channels for feedback control, diagnostics, and inter
Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources l