ترغب بنشر مسار تعليمي؟ اضغط هنا

A Low Charge Demonstration of Electron Pulse Compression for the CLIC RF Power Source

92   0   0.0 ( 0 )
 نشر من قبل Roberto Corsini
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CLIC (Compact Linear Collider) RF power source is based on a new scheme of electron pulse compression and bunch frequency multiplication using injection by transverse RF deflectors into an isochronous ring. In this paper, we describe the modifications needed in the present LEP Pre-Injector (LPI) complex at CERN in order to perform a low-charge test of the scheme. The design of the injector (including the new thermionic gun), of the modified linac, of the matched injection line, and of the isochronous ring lattice, are presented. The results of preliminary isochronicity measurements made on the present installation are also discussed.



قيم البحث

اقرأ أيضاً

High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron laser s (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. The gun utilizes a quarter-wave resonator (QWR) geometry for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.
212 - G. Kazakevich 2014
A novel concept of high-power transmitters utilizing the Continuous Wave (CW) magnetrons, frequency-locked by phase-modulated signals has been proposed to compensate energy losses caused by Synchrotron Radiation (SR) in the electron ring of the MEIC facility. At operating frequency of about 750 MHz the SR losses are ~2 MW. They can be compensated by some number of Superconducting RF (SRF) cavities at the feeding power of about 100-200 kW per cavity. A high-power CW transmitters, based on magnetrons, frequency-locked by phase-modulated signal, allowing a wide-band control in phase and power, and associated with a wide-band closed feedback loop are proposed to feed the SRF cavities to compensate the SR losses of the electron beam in the MEIC collider electron ring.
Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaboration aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.
We have commissioned the digital Low Level RF (LLRF) system for storage ring RF at Advanced Light Source at Lawrence Berkeley National Lab (LBNL). The system is composed of 42 synchronous sampling channels for feedback control, diagnostics, and inter locks. The closed loop RF amplitude and phase stability is measured as < 0.1% and < 0.1 degree respectively, and the real-time machine protection interlock latency is measured < 2.5 microsecond. We have also developed PLC-FPGA-EPICS interfaces to support system configurations between hybrid operation modes using two klystrons driving two RF cavities at 500MHz resonance frequency. The deployed LLRF system has been operating since March 2017.
137 - G. Xia , M. Harvey , A. J. Murray 2014
Ultracold atom-based electron sources have recently been proposed as an alternative to the conventional photo-injectors or thermionic electron guns widely used in modern particle accelerators. The advantages of ultracold atom-based electron sources l ie in the fact that the electrons extracted from the plasma (created from near threshold photo-ionization of ultracold atoms) have a very low temperature, i.e. down to tens of Kelvin. Extraction of these electrons has the potential for producing very low emittance electron bunches. These features are crucial for the next generation of particle accelerators, including free electron lasers, plasma-based accelerators and future linear colliders. The source also has many potential direct applications, including ultrafast electron diffraction (UED) and electron microscopy, due to its intrinsically high coherence. In this paper, the basic mechanism of ultracold electron beam production is discussed and our new research facility for an ultracold, low emittance electron source is introduced. This source is based on a novel alternating current Magneto-Optical Trap (the AC-MOT). Detailed simulations for a proposed extraction system have shown that for a 1 pC bunch charge, a beam emittance of 0.35 mm mrad is obtainable, with a bunch length of 3 mm and energy spread 1 %.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا