ﻻ يوجد ملخص باللغة العربية
The nuclear transparency and the distorted momentum distributions of 4He in the semi-inclusive process 4He(e,ep)X are calculated within the Glauber multiple scattering approach using for the first time realistic four-body variational wave functions embodying central and non-central nucleon-nucleon (N-N) correlations. The contributions from N-N correlations and from Glauber multiple scattering are taken into account exactly to all orders. It is shown that non-central correlations significantly affect both the transparency and the distorted momentum distributions; as a matter of fact: i) the small (approx 3%) value of the effect of correlations on the transparency results from an appreciable cancellation between the short-range central repulsive correlations and the intermediate-range attractive correlations, whose magnitude is significantly affected by the non-central forces, and ii) the effect of Glauber final state interactions on the momentum distribution is reduced by the inclusion of tensor correlations.
A linked cluster expansion for the distorted one-body mixed density matrix is obtained within the Glauber multiple scattering theory with correlated wave functions. The nuclear transparency for 16O is calculated using realistic central and non-centra
A linked cluster expansion for the calculation of ground state observables of complex nuclei with realistic interactions has been used to calculate the ground state energy, density and momentum distribution of 16O and 40Ca. Using the same cluster exp
The effects of the final state interaction (FSI) in semi inclusive deep inelastic electron scattering processes $A(e,ep)X$ off nuclei are investigated in details. Proton production is described within the spectator and the target fragmentation mechan
Experimental cross sections for the $^4He(e,ep)X$ reaction up to a missing momentum of 0.632 GeV/$c$ at $x_B=1.24$ and $Q^2$=2(GeV/$c$)$^2$ are reported. The data are compared to Relativistic Distorted Wave Impulse Approximation(RDWIA) calculations f
Electron-induced one-nucleon knock-out observables are computed for moderate to high momentum transfer making use of semi-relativistic expressions for the one-body and two-body meson-exchange current matrix elements. Emphasis is placed on the semi-re