ترغب بنشر مسار تعليمي؟ اضغط هنا

Realistic calculations of correlations and final state interaction effects in the A(e,ep)X process off complex nuclei

79   0   0.0 ( 0 )
 نشر من قبل Massimiliano Alvioli
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A linked cluster expansion for the calculation of ground state observables of complex nuclei with realistic interactions has been used to calculate the ground state energy, density and momentum distribution of 16O and 40Ca. Using the same cluster expansion and the wave function and correlation parameters obtained from the energy calculation, we have evaluated the semi inclusive reaction A(e,ep)X taking final state interaction (FSI) into account by a Glauber type approach; the comparison between the distorted and undistorted momentum distributions provides an estimate of the transparency of the nuclear medium to the propagation of the hit proton. The effect of color transparency is also included by considering the Finite Formation Time (FFT) that the hit hadron needs to reach its asymptotic physical state.

قيم البحث

اقرأ أيضاً

The effects of the final state interaction (FSI) in semi inclusive deep inelastic electron scattering processes $A(e,ep)X$ off nuclei are investigated in details. Proton production is described within the spectator and the target fragmentation mechan isms whose relevance to the experimental study of the deep inelastic structure functions of bound nucleons and the non perturbative hadronization process is analyzed. Particular attention is paid to the deuteron target within kinematical conditions corresponding to the available and forthcoming experimental data at Jlab. We argue that there are kinematical regions where FSI effects are minimized, allowing for a reliable investigation of the DIS structure functions, and regions where the interaction of the quark-gluon debris with nucleons is maximized, which makes it possible to study hadronization mechanisms. Nuclear structure has been described by means of realistic wave functions and spectral functions and the final state interaction has been treated within an eikonal approximation approach which takes into account the rescattering of the quark-gluon debris with the residual nucleus and, in the case of complex nuclei, within an optical potential approach to account for the FSI of the struck proton.
108 - C. Carasco , J. Bermuth , P. Merle 2003
Asymmetries in quasi-elastic pol 3He(pol e,ep) have been measured at a momentum transfer of 0.67 (GeV/c)^2 and are compared to a calculation which takes into account relativistic kinematics in the final state and a relativistic one-body current opera tor. With an exact solution of the Faddeev equation for the 3He-ground state and an approximate treatment of final state interactions in the continuum good agreement is found with the experimental data.
Inclusive quasi-elastic electron scattering off nuclei is investigated at high momentum transfer (Q^2>1 (GeV/c)^2) and x>1 adopting a consistent treatment of nucleon-nucleon correlations in initial and final states. It is shown that in case of light as well as complex nuclei the inclusive cross section at 1.3<x<2 is dominated by the absorption of the virtual photon on a pair of correlated nucleons and by their elastic rescattering in the continuum, whereas at x>2 it is governed by the rescattering of the outgoing off-mass-shell nucleon in the complex optical potential generated by the ground state of the residual (A-1)-nucleon system.
The effects of the final state interaction in slow proton production in semi inclusive deep inelastic scattering processes off nuclei, A(e,ep)X, are investigated in details within the spectator and target fragmentation mechanisms; in the former mecha nism, the hard interaction on a nucleon of a correlated pair leads, by recoil, to the emission of the partner nucleon, whereas in the latter mechanism proton is produced when the diquark, which is formed right after the visrtual photon-quark interaction, captures a quark from the vacuum. Unlike previous papers on the subject, particular attention is paid on the effects of the final state interaction of the hadronizing quark with the nuclear medium within an approach based upon an effective time-dependent cross section which combines the soft and hard parts of hadronization dynamics in terms of the string model and perturbative QCD, respectively. It is shown that the final state interaction of the hadronizing quark with the medium plays a relevant role both in deuteron and complex nuclei; nonetheless, kinematical regions where final state interaction effects are minimized can experimentally be selected, which would allow one to investigate the structure functions of nucleons embedded in the nuclear medium; likewise, regions where the interaction of the struck hadronizing quark with the nuclear medium is maximized can be found, which would make it possible to study non perturbative hadronization mechanisms.
Short range correlated (SRC) nucleon-nucleon pairs in nuclei are typically studied using measurements of electron-induced hard nucleon-knockout reactions (e.g. $(e,ep)$ and $(e,epN)$), where the kinematics of the knocked-out nucleons are used to infe r their initial state prior to the interaction. The validity of this inference relies on our understanding of the scattering reaction, most importantly how rescattering of the detected nucleons (final state interactions or FSI) distort their kinematical distributions. Recent SRC measurements on medium to heavy nuclei have been performed at high-$x_B$ (i.e., anti-parallel kinematics) where calculations of light nuclei indicate that such distortion effects are small. Here we study the impact of FSI on recent $^{12}$C$(e,ep)$ and $^{12}$C$(e,epp)$ measurements using a transport approach. We find that while FSI can significantly distort the measured kinematical distributions of SRC breakup events, selecting high-$x_B$ anti-parallel events strongly suppresses such distortions. In addition, including the effects of FSI improves the agreement between Generalized Contact Formalism-based calculations and data and can help identify those observables that have minimal sensitivity to FSI effects. This result helps confirm the interpretation of experimental data in terms of initial-state momentum distributions and provides a new tool for the study of SRCs using lepton-scattering reactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا