ﻻ يوجد ملخص باللغة العربية
The real part of the optical potential for the nucleon-nucleus scattering at lower energies (E_i<100MeV) has been calculated including nucleonic and mesonic form factors by a double folding approach. Realistic density- and energy-dependent effective NN-interactions DDM3Y, BDM3Y and HLM3Y based on the Reid and Paris potentials are used in this respect. The effects of the nucleon density distribution and the average relative momentum on the folded potential have been analysed. A good agreement with the phenomenological potential of Lagrange-Lejeune, as well as with the parametrization of Jeukenne-Lejeune-Mahaux for both neutron and proton double-folded potentials is obtained. The results indicate that the strongly simplified model interactions used in preequilibrium reaction theory neglect important dynamical details of such processes.
Optical model potentials for elastic nucleon nucleus scattering are calculated for a number of target nuclides from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-nucleon t-matrices der
Simultaneous $chi^{2}$ analyses previously made for elastic scattering and fusion cross section data for the $^{6}$Li+$^{208}$Pb system is extended to the $^{7}$Li+$^{208}$Pb system at near-Coulomb-barrier energies based on the extended optical model
We apply the low-energy theorems to analyze the recent lattice QCD results for the two-nucleon system at a pion mass of $M_pisimeq 450$ MeV obtained by the NPLQCD collaboration. We find that the binding energies of the deuteron and dineutron are inco
Nuclear fusion reactions, at energies, far below the Coulomb barrier play a significant role in the synthesis of light elements in the primordial nucleosynthesis as well as in the interior of compact stellar objects. Many different kinds of nuclear r
The discrete energy-eigenvalues of two nucleons interacting with a finite-range nuclear force and confined to a harmonic potential are used to numerically reconstruct the free-space scattering phase shifts. The extracted phase shifts are compared to