ﻻ يوجد ملخص باللغة العربية
Simultaneous $chi^{2}$ analyses previously made for elastic scattering and fusion cross section data for the $^{6}$Li+$^{208}$Pb system is extended to the $^{7}$Li+$^{208}$Pb system at near-Coulomb-barrier energies based on the extended optical model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and that both the DR and fusion parts of the polarization potential determined from the $chi^{2}$ analyses satisfy separately the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A comparison is made of the present results with those obtained from the Continuum Discretized Coupled Channel (CDCC) calculations and a previous study based on the conventional optical model with a double folding potential. We also compare the present results for the $^7$Li+$^{208}$Pb system with the analysis previously made for the $^{6}$Li+$^{208}$Pb system.
Based on the extended optical model with the double folding potential, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous $chi^{2}$ analyses are performed of elastic scattering and fusion cross
In this work, angular distribution measurements for the elastic channel were performed for the 9Be+12C reaction at the energies ELab=13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the do
The $^{10}$B+$^{120}$Sn reaction has been systematically studied at laboratory energies around the Coulomb barrier: E$_{rm LAB}=$31.5, 33.5, 35.0, and 37.5 MeV. Cross sections for the elastic scattering and some reaction processes have been measured:
The deuteron-proton elastic scattering is studied in the multiple scattering expansion formalism. The contributions of the one-nucleon-exchange, single- and double scattering are taken into account. The Love and Franey parameterization of the nucleon
The real part of the optical potential for the nucleon-nucleus scattering at lower energies (E_i<100MeV) has been calculated including nucleonic and mesonic form factors by a double folding approach. Realistic density- and energy-dependent effective