ﻻ يوجد ملخص باللغة العربية
Soft-pion theorems are used to show how chiral symmetry constrains the contributions of low-momentum pions to the quark condensate, the pion decay constant and hadron masses, all of which have been proposed as signals of partial restoration of chiral symmetry in matter. These have contributions of order T^2 for a pion gas or of order m_pi for cold nuclear matter, which have different coefficients in all three cases, showing that there are no simple relations between the changes to these quantities in matter. In particular, such contributions are absent from the masses of vector mesons and nucleons and so these masses cannot scale as any simple function of the quark condensate. More generally, pieces of the quark condensate that arise from low-momentum pions should not be associated with partial restoration of chiral symmetry.
With a light dilaton $sigma$ and the light-quark vector mesons $V=(rho,omega)$ incorporated into an effective scale-invariant hidden local symmetric Lagrangian, scale-chiral symmetry -- hidden in QCD -- arises at a high density, $n_{1/2}$, as an emer
The effective field theory of NN interactions in nuclear matter is considered. Due to the Pauli principle the effective NN amplitude is not affected by the shallow bound states. We show that the next-to-leading order terms in the chiral expansion of
The partial restoration of chiral symmetry in nuclear medium is investigated in a model independent way by exploiting operator relations in QCD. An exact sum rule is derived for the quark condensate valid for all density. This sum rule is simplified
We calculate the mass of the vector meson in the chiral symmetry restored vacuum. This is accomplished by separating the four quark operators appearing in the vector and axial vector meson sum rules into chiral symmetric and symmetry breaking parts d
Based on an equivparticle model, we investigate the in-medium quark condensate in neutron stars. Carrying out a Taylor expansion of the nuclear binding energy to the order of $rho^3$, we obtain a series of EOSs for neutron star matter, which are conf