ترغب بنشر مسار تعليمي؟ اضغط هنا

Vector meson mass in the chiral symmetry restored vacuum

85   0   0.0 ( 0 )
 نشر من قبل Su Houng Lee
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the mass of the vector meson in the chiral symmetry restored vacuum. This is accomplished by separating the four quark operators appearing in the vector and axial vector meson sum rules into chiral symmetric and symmetry breaking parts depending on the contribution of the fermion zero modes. We then identify each part from the fit to the vector and axial vector meson masses. By taking the chiral symmetry breaking part to be zero while keeping the symmetric operator to the vacuum value, we find that the chiral symmetric part of the vector and axial vector meson mass to be between 550 and 600 MeV. This demonstrates that chiral symmetry breaking, while responsible for the mass difference between chiral partner, accounts only for a small fraction of the symmetric part of the mass.



قيم البحث

اقرأ أيضاً

We shed light upon the eta mass in nuclear matter in the context of partial restoration of chiral symmetry, pointing out that the U_{A}(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry breaking. As a conse quence, it is expected that the eta mass is reduced by order of 100 MeV in nuclear matter where partial restoration of chiral symmetry takes place. The discussion given here is based on Ref. [1].
In-medium modification of the eta mass is discussed in the context of partial restoration of chiral symmetry in nuclear medium. We emphasize that the U_A(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry br eaking. As a consequence, the eta mass is expected to be reduced by order of 100 MeV in nuclear matter where about 30% reduction of chiral symmetry takes place. The strong attraction relating to the eta mass generation eventually implies that there should be also a strong attractive interaction in the scalar channel of the eta-N two-body system. We find that the attraction can be strong enough to form a bound state.
A triaxial projected shell model including configurations with more than four quasiparticles in the configuration space is developed, and applied to investigate the recently reported five chiral doublets candidates in a single even-even nucleus $^{13 6}$Nd. The energy spectra and transition probability ratios $B(M1)/B(E2)$ are reproduced satisfactorily. The configuration mixing along the rotational bands is studied by analyzing the intrinsic composition of the eigenfunctions. The chiral geometry of these nearly degenerate bands is examined by the textit{K plot} and the textit{azimuthal plot}, and the evolution from the chiral vibration to the static chirality with spin is clearly demonstrated for four pairs of partner bands. From the features in the textit{azimuthal plot}, it is difficult to interpret the other candidate as chiral partners.
Based on the fact that the mass difference between the chiral partners is an order parameter of chiral phase transition and that the chiral order parameter reduces substantially at the chemical freeze-out point in ultra-relativistic heavy ion collisi ons, we argue that the production ratio of $K_1$ over $K^*$ in such collisions should be substantially larger than that predicted in the statistical hadronization model. We further show that while the enhancement effect might be contaminated by the relatively larger decrease of $K_1$ meson than $K^*$ meson during the hadronic phase, the signal will be visible through a systematic study on centrality as the kinetic freeze-out temperature is higher and the hadronic life time shorter in peripheral collisions than in central collisions.
Relativistic quantum molecular dynamics with scalar and vector interactions based on the relativistic mean meson field theory, RQMD.RMF, is developed.It is implemented into the microscopic transport code JAM.The sensitivity of the directed and of the elliptic proton flow in high energy heavy-ion collisions on the stiffness of the RMF equation of state (EoS) is examined. These new calculations are compared to experimental data at mid-central Au + Au collisions in the beam energy range $2.5 < sqrt{s_{NN}} < 20$ GeV. This new RQMD model with the relativistic mean field scalar and vector meson interactions does describe consistently, with one RMF parameter set,the beam energy dependence of both the directed flow and the elliptic flow,from SIS18 to AGS and RHIC BES-II energies, $sqrt{s_{NN}}< 10$ GeV.There are different sensitivities of these different kinds of flow to the EoS: elliptic flow is most sensitive to the nuclear incompressibility constant,at the moderate beam energies $sqrt{s_{NN}}<3$ GeV,whereas the directed flow is most sensitive to the effective baryon mass at saturation density at $3< sqrt{s_{NN}}<5 $ GeV. Matters abruptly change in the next higher energy range,$sqrt{s_{NN}}gtrsim 10-20$ GeV:the directed flow data show a double change of sign of the slope of $v_1$, inverting twice in this energy range,in sudden contradiction to the RQMD.RMF calculation for a monotonous, stiff EoS. This surprising oscillating behavior,a double change of sign of the $v_1$ slope, points to the appearance of a hitherto unknown first-order phase transition in excited QCD matter at high baryon densities in mid-central Au + Au collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا