ﻻ يوجد ملخص باللغة العربية
Universality of short range correlations has been investigated both in coordinate and in momentum space, by means of one-and two-body densities and momentum distributions. In this contribution we discuss one- and two-body momentum distributions across a wide range of nuclei and their common features which can be ascribed to the presence of short range correlations. Calculations for few-body nuclei, namely 3He and 4He, have been performed using exact wave functions obtained with Argonne nucleon-nucleon interactions, while the linked cluster expansion technique is used for medium-heavy nuclei. The center of mass motion of a nucleon-nucleon pair in the nucleus, embedded in the full two-body momentum distribution n_NN(krel,KCM), is shown to exhibit the universal behavior predicted by the two-nucleon correlation model, in which the nucleon-nucleon pair moves inside the nucleus as a deuteron in a mean-field. Moreover, the deuteron-like spin-isospin (ST)=(10) contribution to the pn two-body momentum distribution is obtained, and shown to exactly scale to the deuteron momentum distribution. Universality of correlations in two-body distributions is cast onto the one-body distribution n(k1), obtained by integration of the two-body n_NN(k1, k2): in particular, the high momentum part of n(k1) exhibits the same pattern for all considered nuclei, in favor of a universal character of the short range structure of the nuclear wave function. Perspectives of this work, namely the calculation of reactions involving light and complex nuclei with realistic wave functions and effects of Final State Interactions (FSI), investigated by means of distorted momentum distributions within the Glauber multiple scattering approach, are eventually discussed.
By analyzing recent microscopic many-body calculations of few-nucleon systems and complex nuclei performed by different groups in terms of realistic nucleon-nucleon (NN) interactions, it is shown that NN short-range correlations (SRCs) have a univers
Using realistic wave functions, the proton-neutron and proton-proton momentum distributions in $^3He$ and $^4He$ are calculated as a function of the relative, $k_{rel}$, and center of mass, $K_{CM}$, momenta, and the angle between them. For large val
The nucleon momentum distribution $n_A(k)$ for $A=$2, 3, 4, 16, and 40 nuclei is systematically analyzed in terms of wave functions resulting from advanced solutions of the nonrelativistic Schr{o}dinger equation, obtained within different many-body a
Realistic NN interactions and many-body approaches have been used to calculate ground-state properties of nuclei with A=3, 4, 12, 16, 40, with particular emphasis on various kinds of momentum distributions. It is shown that at proper values of the re
The two-nucleon momentum distributions have been calculated for nuclei up to A=40 and various values of the relative and center-of-mass momenta and angle between them. For complex nuclei a parameter-free linked-cluster expansion, based upon a realist