ﻻ يوجد ملخص باللغة العربية
Experimentally observed superdeformed (SD) rotational bands in $^{36}$Ar and $^{40}$Ar are studied by the cranked shell model (CSM) with the paring correlations treated by a particle-number-conserving (PNC) method. This is the first time the PNC-CSM calculations are performed on the light nuclear mass region around $A=40$. The experimental kinematic moments of inertia $J^{(1)}$ versus rotational frequency are reproduced well. The backbending of the SD band at frequency around $hbaromega=1.5$ MeV in $^{36}$Ar is attributed to the sharp rise of the simultaneous alignments of the neutron and proton $1d_{5/2}[202]5/2$ pairs and $1f_{7/2}[321]3/2$ pairs, which is the consequence of the band crossing between the $1d_{5/2}[202]5/2$ and $1f_{7/2}[321]3/2$ configuration states. The gentle upbending at the low frequency of the SD band in $^{40}$Ar is mainly effected by the alignments of the neutron $1f_{7/2}[321]3/2$ pairs and proton $1d_{5/2}[202]5/2$ pairs. The PNC-CSM calculations show that besides the diagonal parts, the off-diagonal parts of the alignments play an important role in the rotational behavior of the SD bands.
Structure of eight superdeformed bands in the nucleus 151Tb is analyzed using the results of the Hartree-Fock and Woods-Saxon cranking approaches. It is demonstrated that far going similarities between the two approaches exist and predictions related
An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3-4 transitions. The energies and dipole character of the tr
It is argued that the experimental criteria recently used to assign wobbling nature to low-spin bands in several nuclei are insufficient and risky. New experimental data involving angular distribution and linear polarization measurements on an excite
It has been debated whether the experimentally-identified superdeformed rotational band in $^{40}$Ar [E. Ideguchi, et al., Phys. Lett. B 686 (2010) 18] has an axially or triaxially deformed shape. Projected shell model calculations with angular-momen
Decay of the superdeformed bands have been studied mainly concentrating upon the decay-out spin, which is sensitive to the tunneling probability between the super- and normal-deformed wells. Although the basic features are well understood by the calc