ﻻ يوجد ملخص باللغة العربية
The description of baryon resonance decays represents a major challenge of strong interaction physics. We will report on a relativistic approach to mesonic decays of light and strange baryon resonances within constituent quark models. The calculations are performed in the point-form of relativistic quantum mechanics, specifically focussing on the strange sector. It is found that the relativistic predictions generally underestimate the experimental data. The nonrelativistic approximation of the approach leads to the decay operator of the elementary emission model. It is seen that the nonrelativistic reduction has considerable effects on the decay widths.
Relativistic constituent quark models generally describe three-quark systems with particular interactions. The corresponding invariant mass eigenvalue spectra and pertinent eigenstates should exhibit the multiplet structure anticipated for baryon res
We present results for kaon decay widths of baryon resonances from a relativistic study with constituent quark models. The calculations are done in the point-form of Poincare-invariant quantum mechanics with a spectator-model decay operator. We obtai
We report on a study of pi and eta decays of strange baryon resonances within relativistic constituent-quark models based on one-gluon-exchange and Goldstone-boson-exchange dynamics. The investigations are performed in the point form of Poincare-inva
We report on the recent studies of leading order baryon-baryon interactions in covariant baryon chiral perturbation theory. In the strangeness $S=0$ sector, one can achieve a rather good description of the Nijmegen $np$ phase shifts with angular mome
Constituent quark models provide a reasonable description of the baryon mass spectra. However, even in the light- and strange-flavor sectors several intriguing shortcomings remain. Especially with regard to strong decays of baryon resonances no consi