ﻻ يوجد ملخص باللغة العربية
We report on the recent studies of leading order baryon-baryon interactions in covariant baryon chiral perturbation theory. In the strangeness $S=0$ sector, one can achieve a rather good description of the Nijmegen $np$ phase shifts with angular momenta $Jleq 1$, particularly the $^1S_0$ and $^3P_0$ partial waves, comparable with the next-to-leading order (NLO) heavy baryon approach. In the strangeness $S=-1$ hyperon-nucleon sector, the best fit of the 36 scattering data is similar to the sophisticated phenomenological models and the NLO heavy baryon approach.
In this talk, we report on two recent studies of relativistic nucleon-nucleon and hyperon-nucleon interactions in covariant chiral perturbation theory, where they are constructed up to leading order. The relevant unknown low energy constants are fixe
We consider a symmetry-preserving approach to the nucleon-nucleon scattering problem in the framework of the higher-derivative formulation of baryon chiral perturbation theory. Within this framework the leading-order amplitude is calculated by solvin
We calculate the lambda-nucleon scattering phase shifts and mixing angles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. Scattering amplitudes are obtained by s
We report an analysis of the octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-next-to-next-to-leading order with and without the virtual decuplet contributions. Particular attention is paid to the finite-volume
We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD ar