ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical phase trajectories for relativistic nuclear collisions

84   0   0.0 ( 0 )
 نشر من قبل Jorgen Randrup
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Central collisions of gold nuclei are simulated by several existing models and the central net baryon density rho and the energy density eps are extracted at successive times, for beam kinetic energies of 5-40 GeV per nucleon. The resulting trajectories in the (rho,eps) phase plane are discussed from the perspective of experimentally exploring the expected first-order hadronization phase transition with the planned FAIR at GSI or in a low-energy campaign at RHIC.



قيم البحث

اقرأ أيضاً

212 - Jorgen Randrup 2010
The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics for the purpose of elucidating the prospects for this mechanism to cause a phase separation to occur during a relativistic nuclear collisio n. The present study includes not only viscosity but also heat conduction (whose effect on the growth rates is of comparable magnitude but opposite), as well as a gradient term in the local pressure, and the corresponding dispersion relation for collective modes in bulk matter is derived from relativistic fluid dynamics. A suitable two-phase equation of state is obtained by interpolation between a hadronic gas and a quark-gluon plasma, while the transport coefficients are approximated by simple parametrizations that are suitable at any degree of net baryon density. We calculate the degree of spinodal amplification occurring along specific dynamical phase trajectories characteristic of nuclear collision at various energies. The results bring out the important fact that the prospects for spinodal phase separation to occur can be greatly enhanced by careful tuning of the collision energy to ensure that the thermodynamic conditions associated with the maximum compression lie inside the region of spinodal instability.
The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles has been measured by the STAR coll aboration in the beam energy scan (BES) program. In this article, we examine the collision energy dependence of directed flow $v_1$ in fluid dynamical model descriptions of heavy ion collisions for $sqrt{s_{NN}}=3-20$ GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities like e.g. the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data, the values of the slopes are always larger than in the data.
Multiplicity distributions of hadrons produced in central nucleus-nucleus collisions are studied within the hadron-resonance gas model in the large volume limit. In the canonical ensemble conservation of three charges (baryon number, electric charge, and strangeness) is enforced. In addition, in the micro-canonical ensemble energy conservation is included. An analytical method is used to account for resonance decays. Multiplicity distributions and scaled variances for negatively charged hadrons are presented along the chemical freeze-out line of central Pb+Pb (Au+Au) collisions from SIS to LHC energies. Predictions obtained within different statistical ensembles are compared with preliminary NA49 experimental results on central Pb+Pb collisions in the SPS energy range. The measured fluctuations are significantly narrower than a Poisson reference distribution, and clearly favor expectations for the micro-canonical ensemble.
93 - P. Braun-Munzinger 2004
In nucleus-nucleus collisions at ultra-relativistic energies matter is formed with initial energy density significantly exceeding the critical energy density for the transition from hadronic to partonic matter. We will review the experimental evidenc e for this new form of matter - the Quark-Gluon Plasma - from recent experiments at the SPS and RHIC with emphasis on collective behavior, thermalization, and its opacity for fast partons. We will further show that one can determine from the data a fundamental QCD parameter, the critical temperature for the QCD phase transition.
105 - Hiroki Nakamura 1999
Three-pion interferometry is investigated for new information on the space-time structure of the pion source created in ultra-relativistic heavy-ion collisions. The two- and three-pion correlations are numerically computed for incoherent source funct ions based on the Bjorken hydrodynamical model, over a wide range of the kinematic variables. New information provided by three-pion interferometry, different from that provided by two-pion interferometry, should appear in the phases of the Fourier transform of the source function. Variables are identified that would be sensitive to the phases and suitable for observation. For a positive, chaotic source function, however, a variation of the three-pion phase is found to be difficult to extract from experiments. Effects of asymmetry of the source function are also examined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا