ﻻ يوجد ملخص باللغة العربية
The self-consistent random phase approximation (RPA) based on a correlated realistic nucleon-nucleon interaction is used to evaluate correlation energies in closed-shell nuclei beyond the Hartree-Fock level. The relevance of contributions associated with charge exchange excitations as well as the necessity to correct for the double counting of the second order contribution to the RPA ring summation are emphasized. Once these effects are properly accounted for, the RPA ring summation provides an efficient tool to assess the impact of long-range correlations on binding energies throughout the whole nuclear chart, which is of particular importance when starting from realistic interactions.
We have developed a fully consistent framework for calculations in the Quasiparticle Random Phase Approximation (QRPA) with $NN$ interactions from the Similarity Renormalization Group (SRG) and other unitary transformations of realistic interactions.
We develop a scheme to exactly evaluate the correlation energy in the random-phase approximation, based on linear response theory. It is demonstrated that our formula is completely equivalent to a contour integral representation recently proposed by
By coupling a doorway state to a see of random background states, we develop the theory of doorway states in the framework of the random-phase approximation (RPA). Because of the symmetry of the RPA equations, that theory is radically different from
Lately we have been tackling the problem of describing nuclear collective excitations starting from correlated realistic nucleon-nucleon (NN) interactions. The latter are constructed within the Unitary Correlation Operator Method (UCOM), starting fro
The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture da