ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Phase Approximation and neutrino-nucleus cross sections

67   0   0.0 ( 0 )
 نشر من قبل Giampaolo Co'
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English
 تأليف Giampaolo Co




اسأل ChatGPT حول البحث

The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture data is presented. The cross section of electron neutrinos coming from muon decay at rest is calculated.

قيم البحث

اقرأ أيضاً

We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local de nsity approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a $Delta $- dominance model taking into account the renormalization of $Delta$ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the $F_{3}^{A}(x)$ structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.
The inclusive neutrino/antineutrino-induced charged and neutral current reaction cross-sections in $^{12}C$, $^{16}O$, $^{40}Ar$, $^{56}Fe$ and $^{208}Pb$ in the energy region of supernova neutrinos/antineutrinos are studied. The calculations are per formed in the local density approximation (LDA) taking into account the effects due to Pauli blocking, Fermi motion and the renormalization of weak transition strengths in the nuclear medium. The effect of Coulomb distortion of the lepton produced in the charged current reactions has also been included. The numerical results for the energy dependence of the cross-section $sigma(E)$ as well as the flux averaged cross-section and event rates for the charged lepton production in the case of some supernova neutrino/antineutrino fluxes recently discussed in the literature have been presented. We have also given the flux-averaged angular and energy distributions of the charged leptons corresponding to these fluxes.
We present a continuum random phase approximation approach to study electron- and neutrino-nucleus scattering cross sections, in the kinematic region where quasielastic scattering is the dominant process. We show the validity of the formalism by conf ronting inclusive ($e,e$) cross sections with the available data. We calculate flux-folded cross sections for charged-current quasielastic antineutrino scattering off $^{12}$C and compare them with the MiniBooNE cross-section measurements. We pay special emphasis to the contribution of low-energy nuclear excitations in the signal of accelerator-based neutrino-oscillation experiments.
Neutrino-nucleus quasielastic scattering is studied in the plane wave impulse approximation for three nuclear models: the relativistic Fermi gas (RFG), the independent-particle shell model (IPSM) and the natural orbitals (NO) model with Lorentzian de pendence of the excitation energy. A complete study of the kinematics of the semi-inclusive process and the associated cross sections are presented and discussed for 40 Ar and 12 C. Inclusive cross sections are also obtained by integrating the semi-inclusive expressions over the outgoing hadron. Results are consistent with previous studies restricted to the inclusive channel. In particular, a comparison with the analytical results for the RFG model is performed. Explicit expressions for the hadronic tensor and the 10 semi-inclusive nuclear responses are given. Theoretical predictions are compared with semi-inclusive experimental data from T2K experiment.
We present a detailed study of a continuum random phase approximation approach to quasielastic electron-nucleus and neutrino-nucleus scattering. The formalism is validated by confronting ($e,e$) cross-section predictions with electron scattering data for the nuclear targets $^{12}$C, $^{16}$O, and $^{40}$Ca, in the kinematic region where quasielastic scattering is expected to dominate. We examine the longitudinal and transverse contributions to $^{12}$C($e,e$) and compare them with the available data. Further, we study the $^{12}$C($ u_{mu},mu^{-}$) cross sections relevant for accelerator-based neutrino-oscillation experiments. We pay special attention to low-energy excitations which can account for non-negligible contributions in measurements, and require a beyond-Fermi-gas formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا