ﻻ يوجد ملخص باللغة العربية
A nucleon-nucleus interaction model has been applied to ascertain the underlying character of the negative-parity spectra of four isobars of mass seven, from neutron-- to proton--emitter driplines. With one single nuclear potential defined by a simple coupled-channel model, a multichannel algebraic scattering approach (MCAS) has been used to determine the bound and resonant spectra of the four nuclides, of which ^7He and ^7B are particle unstable. Incorporation of Pauli blocking in the model enables a description of all known spin-parity states of the mass-7 isobars. We have also obtained spectra of similar quality by using a large space no-core shell model. Additionally, we have studied ^7Li and ^7Be using a dicluster model. We have found a dicluster-model potential that can reproduce the lowest four states of the two nuclei, as well as the relevant low-energy elastic scattering cross sections. But, with this model, the rest of the energy spectra cannot be obtained.
The reaction 7Li(pi+,pi-)7B has been measured at incident pion energies of 30-90 MeV. 7Li constitutes the lightest target nucleus, where the pionic charge exchange may proceed as a binary reaction to a discrete final state. Like in the Delta-resonanc
A theoretical investigation on the shape transitions with neutron number, temperature and spin for A $=$100 isobars of Z$=$42 to 50 is presented. A variety of shape transitions are observed while moving from neutron rich 100 Mo to proton rich 100 Sn
The destruction of 7Be with neutrons represents the last possible standard avenue to reduce the predicted abundance of the primordial 7Li and in this way to attempt to solve the Cosmological 7Li problem. We discuss the results of an experiment perfor
The neutron rich exotic unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2- resonance is well established, there is a controversy concerning the excited 1/2- resonance reported in some experiments
Nuclides sharing the same mass number (isobars) are observed ubiquitously along the stability line. While having nearly identical radii, stable isobars can differ in shape, and present in particular different quadrupole deformations. We show that eve