ﻻ يوجد ملخص باللغة العربية
The destruction of 7Be with neutrons represents the last possible standard avenue to reduce the predicted abundance of the primordial 7Li and in this way to attempt to solve the Cosmological 7Li problem. We discuss the results of an experiment performed at the Soreq Applied Research Accelerator Facility (SARAF) in Israel where we measured the Maxwellian Averaged Cross Sections (MACS) of the 7Be(n,p), 7Be(n,a), and 7Be(n,ga) reactions. Our MACS measured at 49.5 keV in the window of the Big Bang Nucleosynthesis (BBN), indicate the lack of standard nuclear physics solution to the Primordial 7Li Problem.
The primordial abundance of 7Li as predicted by Big Bang Nucleosynthesis (BBN) is more than a factor 2 larger than what has been observed in metal-poor halo stars. Herein, we analyze the possibility that this discrepancy originates from incorrect ass
Double-differential cross sections for light-ion (p, d, t, 3He and alpha) production in carbon induced by 96 MeV neutrons have been measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Experimental techniques are
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha) production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra are measured at eight laboratory angles from 20 degrees to 160 degrees in steps of 20 degrees. Pr
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha) production in silicon, induced by 96 MeV neutrons are reported. Energy spectra are measured at eight laboratory angles, ranging from 20 degrees to 160 degrees in steps of 20 d
The WMAP satellite, devoted to the observations of the anisotropies of the Cosmic Microwave Background (CMB) radiation, has recently provided a determination of the baryonic density of the Universe with unprecedented precision. Using this, Big Bang N