ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic study of isoscaling behavior in projectile fragmentation by the statistical abrasion-ablation model

94   0   0.0 ( 0 )
 نشر من قبل Yu-Gang Ma
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The isospin effect and isoscaling behavior in projectile fragmentation have been systematically investigated by a modified statistical abrasion-ablation (SAA) model. The normalized peak differences and reduced isoscaling parameters are found to decrease with ($Z_{proj}-Z$)/$Z_{proj}$ or the excitation energy per nucleon and have no significant dependence on the size of reaction systems. Assuming a Fermi-gas behavior, the excitation energy dependence of the symmetry energy coefficients are tentatively extracted from $alpha$ and $beta$ which looks consistent with the experimental data. It is pointed out that the reduced isoscaling parameters can be used as an observable to study excitation extent of system and asymmetric nuclear equation of state in heavy ion collisions.

قيم البحث

اقرأ أيضاً

The charge distribution of the heaviest fragment detected in the decay of quasi-projectiles produced in intermediate energy heavy-ion collisions has been observed to be bimodal. This feature is expected as a generic signal of phase transition in non- extensive systems. In this paper we present new analyses of experimental data from Au on Au collisions at 60, 80 and 100 MeV/nucleon showing that bimodality is largely independent of the data selection procedure, and of entrance channel effects. An estimate of the latent heat of the transition is extracted.
The properties of the nuclear isoscaling at finite temperature are investigated and the extent to which its parameter $alpha$ holds information on the symmetry energy is examined. We show that, although finite temperature effects invalidate the analy tical formulas that relate the isoscaling parameter $alpha$ to those of the mass formula, the symmetry energy remains the main ingredient that dictates the behavior of $alpha$ at finite temperatures, even for very different sources. This conclusion is not obvious as it is not true in the vanishing temperature limit, where analytical formulas are available. Our results also reveal that different statistical ensembles lead to essentially the same conclusions based on the isoscaling analysis, for the temperatures usually assumed in theoretical calculations in the nuclear multifragmentation process.
Different statistical multifragmentation models have been used to study isoscaling, i.e. the factorization of the isotope ratios from two reactions, into fugacity terms of proton and neutron number, R21(N,Z)=Y2(N,Z)/Y1(N,Z)=C*exp(a*N+b*Z). Even thoug h the primary isotope distributions are quite different from the final distributions due to evaporation from the excited fragments, the values of a and b are not much affected by sequential decays. a is shown to be mainly sensitive to the proton and neutron composition of the emitting source and may be used to study isospin-dependent properties in nuclear collisions such as the symmetry energy in the equation of state of asymmetric nuclear matter.
We present a systematic study of the correlators used experimentally to probe the Chiral Magnetic Effect (CME) using the Anomalous Viscous Fluid Dynamics (AVFD) model in Pb--Pb and Xe--Xe collisions at LHC energies. We find a parametrization that des cribes the dependence of these correlators on the value of the axial current density ($n_5/mathrm{s}$), which dictates the CME signal, and on the parameter that governs the background in these measurements i.e., the percentage of local charge conservation (LCC) within an event. This allows to deduce the values of $n_5/mathrm{s}$ and the LCC percentage that provide a quantitative description of the centrality dependence of the experimental measurements. We find that the results in Xe--Xe collisions at $sqrt{s_{mathrm{NN}}} = 5.44$~TeV are consistent with a background only scenario. On the other hand, the model needs a significant non-zero value of $n_5/mathrm{s}$ to match the measurements in Pb--Pb collisions at $sqrt{s_{mathrm{NN}}} = 5.02$~TeV.
In the present work we systematically study the half--lives of proton radioactivity for $51 leq Z leq 83$ nuclei based on the Gamow--like model with a screened electrostatic barrier. In this model there are two parameters while considering the screen ed electrostatic effect of Coulomb potential with the Hulthen potential i.e. the effective nuclear radius parameter r_0 and the screening parameter a. The calculated results can well reproduce the experimental data. In addition, we extend this model to predict the proton radioactivity half--lives of 16 nuclei in the same region within a factor of 2.94, whose proton radioactivity are energetically allowed or observed but not yet quantified. Meanwhile, studying on the proton radioactivity half-life by a type of universal decay law has been done. The results indicate that the calculated half--lives are linearly dependent on Coulomb parameter with the same orbital angular momentum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا